簡易檢索 / 詳目顯示

研究生: 黃國倫
Huang, Kuo-Lun
論文名稱: 設計與開發疼痛治療新藥
Design and development of new drugs for pain management
指導教授: 葉茂榮
Yeh, Mou-Yung
共同指導教授: 王志中
Wang, Jhi-Joung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 185
中文關鍵詞: 局部麻醉劑抗心律不整藥物脊椎麻醉結構與活性相對關係阿米替林長效製劑神經病理性疼痛
外文關鍵詞: Local anesthetic, Antiarrhythmic, Spinal anesthesia, Structure-activity relationship, Amitriptyline, Long-acting formulation, Neuropathic pain
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 疼痛是一種不舒服的感覺,也為一種心理的感覺經驗。雖然已有多種止痛劑供臨床上使用,然而除副作用外尚有藥效作用不強或藥物作用時間較短的缺陷。本論文的目的為研發一系列新型局部麻醉劑與長效止痛劑,作為治療疼痛之用。本論文研究主要分為三大部分,第一部分研究為第一類抗心律不整藥物於大白鼠皮膚止痛與脊椎麻醉之藥效研究。第二部分為設計與合成新型具局部麻醉作用之化合物及其結構與活性相對關係之探討。第三部分為設計與製備長效阿米替林(amitriptyline)及其治療熱痛覺敏感(thermal hyperalgesia)藥效之研究。本論文研究成果為,第一部分,證實第一類抗心律不整藥物奎尼丁(quinidine)、每息禮延(mexiletine)及氟卡奈(flecainide)不管於大白鼠皮膚或脊椎均產生止痛及麻醉的效果。在皮膚或脊椎其藥物強弱排名依序為氟卡奈>奎尼丁>每息禮延。第二部分,完成新類型局部麻醉作用之化合物的設計與合成,以及在大白鼠脊椎麻醉之效用評估。結果發現局部麻醉劑化學結構之鍵鏈部分為碳鏈亦可產生局部麻醉作用,以5或6個碳鏈長具有較佳的脊椎麻醉活性。另外,新合成化合物N,N-二乙基-3-(2,6-二甲基苯基)丙胺和N,N-二乙基-5-(2,6-二甲基苯基)戊胺,在動物實驗中完成其皮膚止痛強度(ED50)、致死劑量(LD50)測試及安全指數(safety indices)的評估。證實N,N-二乙基-3-(2,6-二甲基苯基)丙胺有較高的系統安全指數。第三部分研究成果為完成阿米替林長效製劑之設計及製備,並評估其治療熱痛覺敏感之藥效。長效阿米替林鹼儲存型(depot)之新劑型,於大白鼠誘發熱痛覺敏感後測試在相同劑量下(100 umol/kg),可產生長效之止痛作用,約為阿米替林鹽酸鹽(溶於生理食鹽水)的4.8倍(24小時:5小時)。於大白鼠誘發熱痛覺敏感手術前1小時皮下注射一劑劑量200 umol/kg,則可對大白鼠所誘發熱痛覺敏感產生預防性的作用。總結,本論文應用老藥新用、新合成化合物及劑型改良三種方式,研發出一系列用於治療疼痛之局部麻醉劑與長效止痛劑。

    Pain is an unpleasant sensory and psychological experience. Although many analgesics have been used in clinical medicine, they have some side effects, such as low potency and relatively short duration of action. The aim of this dissertation was to design and develop a series of new local anesthetics and novel long-acting formulations of amitriptyline base for the treatment of pain and thermal hyperalgesia. The research efforts of this study included: evaluating the cutaneous local anesthetic actions and spinal anesthetic effect of three Class I antiarrhythmic drugs in rats, designing new local anesthetic compounds and analyzing the chemical structure-activity relationships and pharmacodynamics of these new synthetic compounds in rats, and developing a novel long-acting formulation of amitriptyline base for the treatment of thermal hyperalgesia in rats. The results of the research included: the first, all three Class I antiarrhythmic drugs (quinidine, mexiletine and flecainide) produced a dose-related cutaneous analgesia and spinal anesthesia in rats. The potencies of these drugs in producing cutaneous and spinal effects were, in ascending order, flecainide (class IC) > quinidine (class IA) > mexiletine (class IB). The second, new local anesthetic compounds were synthesized, developed, and evaluated the spinal anesthetic effects in rats. The intermediate chain of chemical structure of local anesthetic was carbon chain that also produced local anesthetic effect in rats, and a 5- or 6- carbon chain, indicating that their effects of spinal anesthesia were more potent. In addition, compounds N,N-diethyl-3-(2,6-dimethylphenyl)propylamine (6) and N,N-diethyl-5-(2,6-dimethylphenyl)pentylamine (17), their potencies (ED50), lethal doses (LD50), and safety indices were calculated in rats. Compound N,N-diethyl-3-(2,6-dimethylphenyl)propylamine was safer than lidocaine. The third, a novel, long-acting formulation of amitriptyline base for the treatment of thermal hyperalgesia was designed and developed. In rats, the novel depot of amitriptyline-base (100 umol/kg s.c.) had significantly longer antinociception than amitriptyline-HCl (100 umol/kg s.c.) (24 h vs. 5 h, 4.8 times longer). A single subcutaneous injection of amitriptyline-base (200 umol/kg) 1 h before spinal nerve ligation completely prevented thermal hyperalgesia in rats. In conclusion, we applied the new application of old medcations, new synthetic compounds and the improvement of dosage form to develop a series local anesthetics and long-acting analgesic for pain management.

    目 錄 中文摘要 ---------------------------------------------------------------------------- I 英文摘要 -------------------------------------------------------------------------- III 誌謝 --------------------------------------------------------------------------------- V 導言 ---------------------------------------------------------------------------------- 1 第一篇 設計與開發新型局部麻醉劑及其藥效之研究 -------------------- 6 第一章 第一類抗心律不整藥物於大白鼠皮膚止痛之藥效研究 -------- 6 第一節 緒言 ----------------------------------------------------------------------- 6 第二節 材料與方法 -------------------------------------------------------------- 8 壹、動物 ----------------------------------------------------------------------------- 8 貮、藥物 ----------------------------------------------------------------------------- 9 参、大白鼠皮膚局部止痛模式 -------------------------------------------------- 9 肆、資料分析與統計 ------------------------------------------------------------- 11 第三節 結果 ---------------------------------------------------------------------- 12 第四節 討論 ---------------------------------------------------------------------- 12 第五節 結論 ---------------------------------------------------------------------- 18 第二章 第一類抗心律不整藥於大白鼠脊椎麻醉之藥效研究 ---------- 19 第一節 緒言 ---------------------------------------------------------------------- 19 第二節 材料與方法 ------------------------------------------------------------- 20 壹、動物 --------------------------------------------------------------------------- 20 貮、藥物 --------------------------------------------------------------------------- 20 参、動物模式 --------------------------------------------------------------------- 21 肆、50%最大有效反應之劑量(ED50) ----------------------------------------- 24 伍、資料分析與統計 ------------------------------------------------------------ 24 第三節 結果 ---------------------------------------------------------------------- 24 第四節 討論 ---------------------------------------------------------------------- 30 第五節 結論 ---------------------------------------------------------------------- 32 第三章 設計與合成新類型局部麻醉作用之化合物 ---------------------- 33 第一節 緒言 ---------------------------------------------------------------------- 33 壹、局部麻醉劑歷史之簡介 --------------------------------------------------- 33 貳、具局部麻醉作用化合物結構設計之思維 ------------------------------ 34 参、設計化合物製備之流程 --------------------------------------------------- 42 第二節 實驗材料與方法 ------------------------------------------------------- 46 壹、實驗儀器 --------------------------------------------------------------------- 46 貮、實驗藥品 --------------------------------------------------------------------- 46 参、實驗步驟及光譜資料 ------------------------------------------------------ 48 第三節 結果 ---------------------------------------------------------------------- 76 第四節 結論 ---------------------------------------------------------------------- 76 第四章 合成新型局部麻醉劑其結構與活性相對關係之探討 ---------- 79 第一節 緒言 ---------------------------------------------------------------------- 79 第二節 材料與方法 ------------------------------------------------------------- 80 壹、動物 --------------------------------------------------------------------------- 80 貮、藥物 --------------------------------------------------------------------------- 81 参、動物模式 --------------------------------------------------------------------- 82 肆、資料分析與統計 ------------------------------------------------------------ 83 第三節 結果 ---------------------------------------------------------------------- 84 壹、新型化合物其鍵鏈種類與其局部麻醉活性之相對關係 ------------ 84 貳、新型化合物其鍵鏈長度與其局部麻醉活性之相對關係 ------------ 89 参、新型化合物苯環取代基與局部麻醉活性之相對關係 --------------- 92 第四節 討論 ---------------------------------------------------------------------- 95 壹、新型化合物其鍵鏈種類與其局部麻醉活性之相對關係探討 ------ 95 貳、新型化合物其鍵鏈長度與其局部麻醉活性之相對關係探討 ------ 98 参、新型化合物苯環取代基與局部麻醉活性之相對關係探討 --------- 98 第五節 結論 ---------------------------------------------------------------------- 99 第五章 設計與合成新型長效局部麻醉作用之化合物 ----------------- 100 第一節 緒言 -------------------------------------------------------------------- 100 壹、新型長效局部麻醉作用化合物結構設計之思維 ------------------- 100 貳、設計化合物製備之流程 ------------------------------------------------- 103 第二節 實驗材料與方法 ----------------------------------------------------- 104 壹、實驗儀器 ------------------------------------------------------------------- 104 貮、實驗藥品 ------------------------------------------------------------------- 105 参、實驗步驟及光譜資料 ---------------------------------------------------- 105 第三節 結果與結論 ----------------------------------------------------------- 111 第六章 新化合物之長效局部麻醉作用及急性毒性之評估 ----------- 113 第一節 緒言 -------------------------------------------------------------------- 113 第二節 材料與方法 ----------------------------------------------------------- 114 壹、動物 ------------------------------------------------------------------------- 114 貮、藥物 ------------------------------------------------------------------------- 115 参、大白鼠皮膚局部止痛模式 ---------------------------------------------- 115 肆、藥物作用強度(potency)及作用時間(duration)評估 ---------------- 116 伍、藥物急性毒性評估 ------------------------------------------------------- 117 陸、藥物安全指標 ------------------------------------------------------------- 118 柒、電腦軟體輔助計算 ------------------------------------------------------- 118 捌、資料分析與統計 ---------------------------------------------------------- 119 第三節 結果 -------------------------------------------------------------------- 120 壹、皮下注射利度卡因鹽酸鹽、化合物6鹽酸鹽和化合物 17鹽酸鹽之藥物作用強度(potency)及作用持續時間 (duration)評估 ------------------------------------------------------------- 120 貳、大白鼠腹腔注射利度卡因鹽酸鹽、化合物6鹽酸鹽和 化合物17鹽酸鹽之致死劑量評估------------------------------------- 124 参、利度卡因鹽酸鹽、化合物6鹽酸鹽和化合物17鹽酸鹽 之安全指數評估 ---------------------------------------------------------- 124 肆、利度卡因、化合物6和化合物17分子嵌合之結合能及 分配係數估算 ------------------------------------------------------------- 124 第四節 討論 -------------------------------------------------------------------- 128 壹、皮下注射利度卡因鹽酸鹽、化合物6鹽酸鹽和化合物 17鹽酸鹽之藥物作用強度(potency)及作用持續時間 (duration)評估 ------------------------------------------------------------- 128 貳、大白鼠腹腔注射利度卡因鹽酸鹽、化合物6鹽酸鹽和 化合物17鹽酸鹽之致死劑量及安全指數評估 -------------------- 130 第五節 結論 -------------------------------------------------------------------- 131 第二篇 設計與製備長效阿米替林及其藥效之研究 -------------------- 132 第一章 長效阿米替林治療熱痛覺敏感之藥效研究 -------------------- 132 第一節 緒言 -------------------------------------------------------------------- 132 第二節 材料與方法 ----------------------------------------------------------- 135 壹、動物 ------------------------------------------------------------------------- 135 貮、藥物 ------------------------------------------------------------------------- 136 参、動物模式 ------------------------------------------------------------------- 136 肆、熱痛覺敏感(thermal hyperalgesia)行為測試 ------------------------- 137 伍、實驗設計 ------------------------------------------------------------------- 138 陸、資料分析與統計 ---------------------------------------------------------- 140 第三節 結果 -------------------------------------------------------------------- 140 壹、動物模式建立之誘發熱痛覺敏感之結果 ---------------------------- 140 貳、皮下注射阿米替林鹽酸鹽水劑對大白鼠誘發熱痛覺敏感 之抑制效果 ---------------------------------------------------------------- 142 参、皮下注射阿米替林鹼油劑對大白鼠誘發熱痛覺敏感之 抑制效果 ------------------------------------------------------------------- 142 第四節 討論 -------------------------------------------------------------------- 146 第五節 結論 -------------------------------------------------------------------- 147 第二章 阿米替林以preemptive給藥對預防熱痛覺敏感之研究 ----- 148 第一節 緒言 -------------------------------------------------------------------- 148 第二節 材料與方法 ----------------------------------------------------------- 150 壹、動物 ------------------------------------------------------------------------- 150 貮、藥物 ------------------------------------------------------------------------- 150 参、動物模式 ------------------------------------------------------------------- 151 肆、熱痛覺敏感(thermal hyperalgesia)行為測試 ------------------------- 152 伍、實驗設計 ------------------------------------------------------------------- 152 陸、資料分析與統計 ---------------------------------------------------------- 155 第三節 結果 -------------------------------------------------------------------- 155 壹、動物模式建立之誘發熱痛覺敏感之結果 ---------------------------- 155 貳、阿米替林鹽酸鹽(水劑)在預防熱痛覺敏感產生之 劑量-反應關係研究 ------------------------------------------------------ 155 参、阿米替林鹽酸鹽(水劑)於不同給藥時間長度下其 預防熱痛覺敏感產生之研究 ------------------------------------------- 157 肆、阿米替林鹼(油劑)在預防熱痛覺敏感產生之研究 ---------------- 157 伍、阿米替林鹽酸鹽(水劑)與阿米替林鹼(油劑)在抑制 或預防熱痛覺敏感產生之綜合比較 ---------------------------------- 160 第四節 討論 -------------------------------------------------------------------- 160 第五節 結論 -------------------------------------------------------------------- 166 總 結 ----------------------------------------------------------------------------- 167 參考文獻 ------------------------------------------------------------------------- 170 附錄、已發表之相關著作(Publication List) --------------------------------- 185 表目錄 表I-1-1、藥物於皮膚止痛模式下50 %最大有效反應之劑量(ED50) --- 15 表I-2-1、三個代表性第一類抗心律不整藥物與布比卡因於大白鼠 神經阻斷其ED25、ED50和ED75劑量一覽表 ------------------- 28 表I-3-1、合成新類型局部麻醉作用之化合物 ----------------------------- 77 表I-4-1、合成新型局部麻醉作用之化合物在27 mM劑量下於大鼠 測試脊椎麻醉作用強度與作用時間一覽表 ------------------- 87 表I-5-1、合成新型長效局部麻醉作用之化合物 ------------------------- 112 表I-6-1、藥物或化合物於大白鼠利用up-and-down method測試 評估化合物其50%有效劑量 ----------------------------------- 121 表I-6-2、藥物或化合物於大白鼠利用up-and-down method測試 評估化合物其50%致死劑量 ----------------------------------- 125 表I-6-3、藥物或化合物之50%有效劑量ED50S、50%致死劑量LD50S 及安全指數(LD50/ED50)及ED50劑量下之作用時間 ------- 126 表I-6-4、藥物或化合物與離子通道受體之結合能(binding energy)、 分配係數(log P)之估計值 --------------------------------------- 127 表II-1-1、阿米替林鹽酸鹽及其鹼在大白鼠中抑制熱痛覺敏感 之效果一覽表 ----------------------------------------------------- 144 表II-2-1、阿米替林鹽酸鹽及其鹼在大白鼠中抑制熱痛覺敏感 之效果一覽表 ----------------------------------------------------- 162 圖目錄 圖I-1-1、第一類抗心律不整藥物奎尼丁、每息禮延、利度卡因 和氟卡奈之化學結構式 -------------------------------------------- 7 圖I-1-2、皮下注射第一類抗心律不整藥與利度卡因對大白鼠皮膚 trunci肌肉反射之抑制時間圖 ----------------------------------- 13 圖I-1-3、氟卡奈、奎尼丁、每息禮延與利度卡因於大白鼠皮膚止痛 模式之劑量-反應曲線圖 ------------------------------------------ 14 圖I-1-4、氟卡奈、奎尼丁、每息禮延與利度卡因於大白鼠皮膚止痛 模式於ED50劑量下之阻斷持續時間圖 ------------------------ 16 圖I-2-1、5%葡萄糖水溶液、氟卡奈與布比卡因於大白鼠脊椎神經 阻斷(% PE)時間圖 ------------------------------------------------- 26 圖I-2-2、三個代表性第一類抗心律不整藥物與布比卡因於大白鼠 脊椎神經阻斷之劑量-反應曲線圖 ------------------------------ 27 圖I-2-3、三個代表性第一類抗心律不整藥物與布比卡因於大白鼠 脊椎神經阻斷持續時間圖 ---------------------------------------- 29 圖I-3-1、例舉局部麻醉劑之化學結構式 ----------------------------------- 35 圖I-3-2、例舉三環抗憂鬱藥之化學結構式 -------------------------------- 37 圖I-3-3、例舉第一類抗心律不整藥物之化學結構式 -------------------- 38 圖I-3-4、例舉止咳藥之化學結構式 ----------------------------------------- 39 圖I-3-5、設計局部麻醉作用之化學結構 ----------------------------------- 40 圖I-4-1、藥物利度卡因鹽酸鹽及化合物6鹽酸鹽於27 mM濃度下, 大白鼠脊椎神經麻醉作用之最大阻斷效用(%MPE)圖 ------ 85 圖I-4-2、藥物利度卡因鹽酸鹽及化合物6鹽酸鹽於27 mM濃度下, 大白鼠脊椎神經麻醉作用持續時間圖 ------------------------- 86 圖I-4-3、藥物利度卡因鹽酸鹽及化合物8a, 8b, 11a-11f鹽酸鹽於 27 mM濃度下,大白鼠脊椎神經麻醉作用之最大阻斷 效用(% MPE)圖 ---------------------------------------------------- 90 圖I-4-4、藥物利度卡因鹽酸鹽及化合物8a, 8b, 11a-11f鹽酸鹽於 27 mM濃度下,大白鼠脊椎神經麻醉作用持續時間圖 ---- 91 圖I-4-5、藥物利度卡因鹽酸鹽、化合物16a、16b和16c鹽酸鹽 於27 mM濃度下,大白鼠脊椎神經麻醉作用之最大 阻斷效用(%MPE)圖 ----------------------------------------------- 93 圖I-4-6、藥物利度卡因鹽酸鹽、化合物16a、16b和16c鹽酸鹽 於27 mM濃度下,大白鼠脊椎神經麻醉作用之持續 時間圖 ---------------------------------------------------------------- 94 圖I-4-7、藥物利度卡因鹽酸鹽、化合物8b、6和16a鹽酸鹽於 27 mM濃度下,大白鼠脊椎神經麻醉作用之最大阻斷 效用(%MPE)圖 ----------------------------------------------------- 96 圖I-4-8、藥物利度卡因鹽酸鹽、化合物8b、6和16a鹽酸鹽於 27 mM濃度下,大白鼠脊椎神經麻醉作用之持續時 間圖 ------------------------------------------------------------------- 97 圖I-5-1、設計新型長效局部麻醉作用化合物N,N-二乙基-5-(2,6-二 甲基苯基)戊胺(17)之化學結構 -------------------------------- 102 圖I-6-1、同為ED50的劑量下,皮下注射利度卡因鹽酸鹽、化合 物6和17鹽酸鹽對大白鼠皮膚trunci肌肉反射之抑制 時間圖 -------------------------------------------------------------- 122 圖I-6-2、利度卡因鹽酸鹽、化合物6和17鹽酸鹽於大白鼠皮膚 止痛模式之阻斷持續時間圖 ----------------------------------- 123 圖II-1-1、阿米替林(amitriptyline)之化學結構式 ------------------------- 134 圖II-1-2、大白鼠誘導熱痛覺敏感時間圖 ---------------------------------- 141 圖II-1-3、大白鼠皮下注射一劑阿米替林鹽酸鹽(AMT-HCl) (溶於 生理食鹽水)對熱痛覺敏感抑制效果圖 ---------------------- 143 圖II-1-4、大白鼠皮下注射一劑阿米替林鹼(AMT-Base) (溶於芝 麻油)對熱痛覺敏感抑制效果圖 ------------------------------- 145 圖II-2-1、大白鼠誘導熱痛覺敏感長期觀測時間圖 --------------------- 156 圖II-2-2、大白鼠皮下注射六劑阿米替林鹽酸鹽(AMT-HCl)後對 預防熱痛覺敏感效果劑量-反應關係圖 ---------------------- 158 圖II-2-3、阿米替林鹽酸鹽(AMT-HCl)於不同給藥時間長度下對 預防熱痛覺敏感效果圖 ----------------------------------------- 159 圖II-2-4、大白鼠於手術前1小時皮下注射一劑阿米替林鹽酸鹽 (AMT-HCl)或阿米替林鹼(AMT-Base)後對預防熱痛覺 敏感產生之效果圖 ----------------------------------------------- 161 圖II-2-5、藥物阿米替林鹽酸鹽(AMT-HCl)及其阿米替林鹼(AMT- Base)經由皮下注射後,對熱痛覺敏感抑制效果之藥物 作用時間綜合比較圖 -------------------------------------------- 163 流程 3-1 --------------------------------------------------------------------------- 42 流程 3-2 --------------------------------------------------------------------------- 43 流程 3-3 --------------------------------------------------------------------------- 45 流程 5-1 -------------------------------------------------------------------------- 103

    Abdel-Magid AF, Carson KG, Harris BD, Maryanoff CA, Shah RD. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. Journal of Organic Chemistry 61(11): 3849-3862. 1996.

    Akkaya T, Ozkan D. Chronic post-surgical pain. AĞRI - The Journal of The Turkish Society of Algology 21(1): 1-9. 2009.

    Allen LVJ, Popovich NG, Ansel HC, Drug dosage form and drug delivery system design: biopharmaceutic and pharmacokinetics considerations. In: Ansel's pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins, Philadelphia, pp 142-185. 2005a.

    Allen LVJ, Popovich NG, Ansel HC, Sterile dosage forms and delivery systems: Parenterals. In: Ansel's pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins, Philadelphia, pp 443-505. 2005b.

    Arsenault A, Sawynok J. Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury. Pain 146(3): 308-314. 2009.

    Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F. An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Experimental Neurology 182(1): 12-20. 2003a.

    Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F. A new animal model of vincristine-induced nociceptive peripheral neuropathy. Neurotoxicology 24(6): 797-805. 2003b.

    Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurology 9(8): 807-819. 2010.

    Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1): 87-107. 1988.

    Berde CB, Strichartz GR. Local Anesthetics. In: Miller RD (editor), Miller's Anesthesia. Chapter 30. Churchill Livingstone, Orlando, Florida, pp. 913-939. 2009.

    Bokesch PM, Post C, Strichartz G. Structure-activity relationship of lidocaine homologs producing tonic and frequency-dependent impulse blockade in nerve. Journal of Pharmacology and Experimental Therapeutics 237(3): 773-781. 1986.

    Bomholt SF, Mikkelsen JD, Blackburn-Munro G. Antinociceptive effects of the antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal models of acute, persistent and neuropathic pain. Neuropharmacology 48(2): 252-263. 2005.

    Borgeat A, Aguirre J. Update on local anesthetics. Current Opinion in Anesthesiology 23(4): 466-471. 2010.

    Bowsher D. The effects of pre-emptive treatment of postherpetic neuralgia with amitriptyline: A randomized, double-blind, placebo-controlled trial. Journal of Pain and Symptom Management 13(6): 327-331. 1997.

    Brooks RR, Carpenter JF, Jones SM, Ziegler TC, Pong SF. Canine carrageenan-induced acute paw inflammation model and its response to nonsteroidal antiinflammatory drugs. Journal of Pharmacological Methods 25(4): 275-283. 1991.

    Brown DL, Fink BR. The history of neural blockade and pain management. In: Cousins MJ, Bridenbaugh PO (editors), Neural blockade in clinical anesthesia and management of pain. Chapter 1. Lippincott–Raven, New York, pp. 3-27. 1998.

    Bulbring E, Wajda I. Biological comparison of local anaesthetics. Journal of Pharmacology and Experimental Therapeutics 85: 78-84. 1945.

    Campbell TJ, Williams KM. Therapeutic drug monitoring: antiarrhythmic drugs. British Journal of Clinical Pharmacology 46(4): 307-319. 1998.

    Campbell TJ, Williams KM. Therapeutic drug monitoring: antiarrhythmic drugs. British Journal of Clinical Pharmacology 52: 21S-34S. 2001.

    Carruthers SG. Duration of drug action. American Family Physician 21(2): 119-126. 1980.

    Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacological Reviews 57(4): 397-409. 2005.

    Catterall WA, Mackie K: Local anesthetics. In: Brunton LJ, Parker KL, Buxton I, et al. (editors), Goodman and Gilman’s The Pharmacological Basis of Therapeutics (ed 12). Chapter 20. New York, NY, McGraw Hill, 2011.

    Chen YW, Chen YC, Lin CN, Chu CC, Lin MT, Wang BJ, Kao CH. The spinal anaesthetic effect of dextromethorphan, dextrorphan, and 3-methoxymorphinan. European Journal of Pharmacology 569(3): 188-193. 2007a.

    Chen YW, Chu KS, Lin CN, Tzeng JI, Chu CC, Lin MT, Wang JJ. Dextromethorphan or dextrorphan have a local anesthetic effect on infiltrative cutaneous analgesia in rats. Anesthesia and Analgesia 104(5): 1251-1255. 2007b.

    Chen YW, Huang KL, Liu SY, Tzeng JI, Chu KS, Lin MT, Wang JJ. Intrathecal tri-cyclic antidepressants produce spinal anesthesia. Pain 112(1-2): 106-112. 2004.

    Cheng KI, Shieh JP, Lin CN, Chu KS, Kwan AL, Hou CH, Wang JJ. Mexiletine has a local anesthetic effect on sciatic nerve blockade in rats. Drug Development Research 67(12): 905-909. 2006.

    Chiang HY, Chen CT, Chien HF, Hsieh ST. Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiology of Disease 18(1): 40-53. 2005.

    Chung JM, Choi Y, Yoon YW, Na HS. Effects of age on behavioral signs of neuropathic pain in an experimental rat model. Neuroscience Letters 183(1-2): 54-57. 1995.

    Courtney KR. Structure-activity relations for frequency-dependent sodium-channel block in nerve by local-anesthetics. Journal of Pharmacology and Experimental Therapeutics 213(1): 114-119. 1980.

    Courtney KR. Comparative actions of mexiletine on sodium-channels in nerve, skeletal and cardiac-muscle. European Journal of Pharmacology 74(1): 9-18. 1981.

    Covino BG, Wildsmith JAW. Clinical pharmacology of local anesthetic agents. In: Cousins MJ, Bridenbaugh PO (editors), Neural blockade in clinical anesthesia and management of pain. Chapter 4. Lippincott-Raven, East Washington Square, pp. 97-128. 1998.

    Cowan JC, Williams EMV. Characterization of a new oral anti-arrhythmic drug, flecainide (R818). European Journal of Pharmacology 73(4): 333-342. 1981.

    Davis GC, Kong Y, Paige M, Li Z, Merrick EC, Hansen T, Suy S, Wang K, Dakshanamurthy S, Cordova A, McManus OB, Williams BS, Chruszcz M, Minor W, Patel MK, Brown ML. Asymmetric synthesis and evaluation of a hydroxyphenylamide voltage-gated sodium channel blocker in human prostate cancer xenografts. Bioorganic & Medicinal Chemistry 20(6): 2180–2188. 2012.

    Davis JL, Lewis SB, Gerich JE, Kaplan RA, Schultz TA, Wallin JD. Peripheral diabetic neuropathy treated with amitriptyline and fluphenazine. Jama-Journal of the American Medical Association 238(21): 2291-2292. 1977.

    Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87(2): 149-158. 2000.

    Deleo JA, Coombs DW, Willenbring S, Colburn RW, Fromm C, Wagner R, Twitchell BB. Characterization of a neuropathic pain model: sciatic cryoneurolysis in the rat. Pain 56(1): 9-16. 1994.

    Dillane D, Finucane BT. Local anesthetic systemic toxicity. Canadian Journal of Anaesthesia 57(4): 368-380. 2010.

    Dixon WJ. The Up and Down Method for Small Samples. Journal of the American Statistical Association 60(312): 967-978. 1965.

    Dworkin RH, McDermott MP, Raja SN. Preventing Chronic Postsurgical Pain How Much of a Difference Makes a Difference? Anesthesiology 112(3): 516-518. 2010.

    Esser MJ, Sawynok J. Acute amitriptyline in a rat model of neuropathic pain: differential symptom and route effects. Pain 80(3): 643-653. 1999.

    Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: An evidence based proposal. Pain 118(3): 289-305. 2005.

    Fozzard HA, Lee PJ, Lipkind GM. Mechanism of local anesthetic drug action on voltage-gated sodium channels. Current Pharmaceutical Design 11(21): 2671-2686. 2005.

    Gerner P, Haderer AE, Mujtaba M, Sudoh Y, Narang S, Abdi S, Srinivasa V, Pertl C, Wang GK. Assessment of differential blockade by amitriptyline and its N-methyl derivative in different species by different routes. Anesthesiology 98(6): 1484-1490. 2003.

    Gerner P, Nakamura T, Quan CF, Anthony DC, Wang GK. Spinal tonicaine: Potency and differential blockade of sensory and motor functions. Anesthesiology 92(5): 1350-1360. 2000.

    Gold MS, Thut PD. Lithium increases potency of lidocaine-induced block of voltage-gated Na+ currents in rat sensory neurons in vitro. Journal of Pharmacology and Experimental Therapeutics 299(2): 705-711. 2001.

    Goldstein RA, DesLauriers C, Burda A, Johnson-Arbor K. Cocaine: history, social implications, and toxicity: a review. Seminars in Diagnostic Pathology 26(1):10-17. 2009.

    Gore M, Dukes E, Rowbotham D, Tai KS, Leslie DL. Prevalence of contraindicated medical conditions and use of precluded medications in patients with painful neuropathic disorders prescribed amitriptyline. Pain Practice 6(4): 265-272. 2006.

    Gorelick AB, Koshy SS, Hooper FG, Bennett TC, Chey WD, Hasler WL. Differential effects of amitriptyline on perception of somatic and visceral stimulation in healthy humans. American Journal of Physiology-Gastrointestinal and Liver Physiology 275(3): G460-G466. 1998.

    Guasch J, Grau M, Montero JL, Felipe A. Pharmacotoxicological effects of acetaminophen in rodents - battery of tests to screen potential analgesic acetaminophen derivatives. Methods and Findings in Experimental and Clinical Pharmacology 12(2): 141-148. 1990.

    Harden RN. Chronic neuropathic pain: Mechanisms, diagnosis, and treatment. Neurologist 11(2): 111-122. 2005.

    Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1): 77-88. 1988.

    Hou CH, Tzeng JI, Chen YW, Lin CN, Lin MT, Tu CH, Wang JJ. Dextromethorphan, 3-methoxymorphinan, and dextrorphan have local anaesthetic effect on sciatic nerve blockade in rats. European Journal of Pharmacology 544(1-3): 10-16. 2006.

    Jackson T, McLure HA. Pharmacology of Local Anesthetics. Ophthalmology Clinics of North America 19(2): 155-161. 2006.

    Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundamental & Clinical Pharmacology 25(1): 1-28. 2011.

    Kau YC, Hung YC, Zizza AM, Zurakowski D, Greco WR, Wang GK, Gerner P. Efficacy of lidocaine or bupivacaine combined with ephedrine in rat sciatic nerve block. Regional Anesthesia and Pain Medicine 31(1): 14-18. 2006.

    Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet 367(9522): 1618-1625. 2006.

    Kehne JH, Kane JM, Chaney SF, Hurst G, McCloskey TC, Petty MA, Senyah Y, Wolf HH, Zobrist R, White HS. Preclinical characterization of MDL 27,192 as a potential broad spectrum anticonvulsant agent with neuroprotective properties. Epilepsy Research 27(1): 41-54. 1997.

    Khan MA, Gerner P, Sudoh Y, Wang GK. Use of a charged lidocaine derivative, tonicaine, for prolonged infiltration anesthesia. Regional Anesthesia and Pain Medicine 27(2): 173-179. 2002a.

    Khan MA, Gerner P, Wang GK. Amitriptyline for prolonged cutaneous analgesia in the rat. Anesthesiology 96(1): 109-116. 2002b.

    Khodorova AB, Strichartz GR. The addition of dilute epinephrine produces equieffectiveness of bupivacaine enantiomers for cutaneous analgesia in the rat. Anesthesia and Analgesia 91(2): 410-416. 2000.

    Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3): 355-363. 1992.

    Kirsch JR, Diringer MN, Borel CO, Hanley DF, Merritt WT, Bulkley GB. Preoperative lumbar epidural morphine improves postoperative analgesia and ventilatory function after transsternal thymectomy in patients with myasthenia-gravis. Critical Care Medicine 19(12): 1474-1479. 1991.

    Kissin I. Preemptive analgesia-terminology and clinical relevance. Anesthesia and Analgesia 79(4): 809-810. 1994.

    Konzen G, Reichardt B, Hauswirth O. Fast and slow blockade of sodium-channels by flecainide in rabbit cardiac purkinje-fibers. Naunyn-Schmiedebergs Archives of Pharmacology 341(6): 565-576. 1990.

    Kowey PR. Pharmacological effects of antiarrhythmic drugs - Review and update. Archives of Internal Medicine 158(4): 325-332. 1998.

    Kowey PR, Marinchak RA, Rials SJ, Bharucha DB. Classification and pharmacology of antiarrhythmic drugs. American Heart Journal 140(1): 12-20. 2000.

    Labbé L, Turgeon J. Clinical pharmacokinetics of mexiletine. Clinical Pharmacokinetics 37(5): 361-384. 1999.

    Levin M. Nerve Blocks in the Treatment of Headache. Neurotherapeutics 7(2): 197-203. 2010.

    Lichtman AH. The up-and-down method substantially reduces the number of animals required to determine antinociceptive ED50 values. Journal of Pharmacological and Toxicological Methods 40(2): 81-85. 1998.

    Lipkind GM, Fozzard HA. KcsA crystal structure as framework for a molecular model of the Na+ channel pore. Biochemistry 39(28): 8161-8170. 2000.

    Lipkind GM, Fozzard HA. Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels. Molecular Pharmacology 68(6): 1611-1622. 2005.

    Liu KS, Tzeng JI, Chen YW, Huang KL, Kuei CH, Wang JJ. Novel depots of buprenorphine prodrugs have a long-acting antinociceptive effect. Anesthesia and Analgesia 102(5): 1445-1451. 2006.

    Luzhkov VB, Nilsson J, Arhem P, Aqvist J. Computational modelling of the open-state Kv 1.5 ion channel block by bupivacaine. Biochimica et Biophysica Acta 1652(1): 35-51. 2003.

    Maizels M, McCarberg B. Antidepressants and antiepileptic drugs for chronic non-cancer pain. American Family Physician 71(3): 483-490. 2005.

    Malamed SF. Handbook of Local Anesthesia. Mosby-Year Book, Inc, St. Louis, Missouri. 1997.

    McCarson KE, Ralya A, Reisman SA, Enna SJ. Amitriptyline prevents thermal hyperalgesia and modifications in rat spinal cord GABA(B) receptor expression and function in an animal model of neuropathic pain. Biochemical Pharmacology 71(1-2): 196-202. 2005.

    McLure HA, Rubin AP. Review of local anaesthetic agents. Minerva Anestesiologica 71(3): 59-74. 2005.

    McQuay HJ, Tramer M, Nye BA, Carroll D, Wiffen PJ, Moore RA. A systematic review of antidepressants in neuropathic pain. Pain 68(2-3): 217-227. 1996.

    Mochizucki D. Serotonin and noradrenaline reuptake inhibitors in animal models of pain. Human Psychopharmacology-Clinical and Experimental 19: S15-S19. 2004.

    Mohammad FK, Faris GAM, Rhayma MSH, Ahmed K. Neurobehavioral effects of tetramisole in mice. Neurotoxicology 27(2): 153-157. 2006.

    Muhiddin KA, Turner P. Is there an ideal antiarrhythmic drug a review - with particular reference to class I antiarrhythmic agents. Postgraduate Medical Journal 61(718): 665-678. 1985.

    O'Connor AB. Neuropathic Pain Quality-of-Life Impact, Costs and Cost Effectiveness of Therapy. Pharmacoeconomics 27(2): 95-112. 2009.

    Onghena P, Van houdenhove B. Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain 49(2): 205-219. 1992.

    Pogatzki-Zahn EM, Zahn PK. From preemptive to preventive analgesia. Current Opinion in Anaesthesiology 19(5): 551-555. 2006.

    Raouf R, Quick K, Wood JN. Pain as a channelopathy. Journal of Clinical Investigation 120(11): 3745-3752. 2010.

    Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. British Journal of Anaesthesia 89(1): 52-61. 2002.

    Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43(2): 205-218. 1990.

    Sheets MF, Fozzard HA, Lipkind GM, Hanck DA. Sodium Channel Molecular Conformations and Antiarrhythmic Drug Affinity. Trends in Cardiovascular Medicine 20(1): 16-21. 2010.

    Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic & Clinical Pharmacology & Toxicology 96(6): 399-409. 2005.

    Singh BN, Williams EM. Investigations of mode of action of a new antidysrhythmic drug KO 1173. British Journal of Pharmacology 44(1): 1-9. 1972.

    Strichartz GR. Neural physiology and local anesthetic action. In: Cousins MJ, Bridenbaugh PO (editors), Neural blockade in clinical anesthesia and management of pain. Chapter 2. Lippincott-Raven, East Washington Square, pp. 35-54. 1998.

    Sudoh Y, Cahoon EE, Gerner P, Wang GK. Tricyclic antidepressants as long-acting local anesthetics. Pain 103(1-2): 49-55. 2003.

    Sudoh Y, Desai SP, Haderer AE, Sudoh S, Gerner P, Anthony DC, De Girolami U, Wang GK. Neurologic and histopathologic evaluation after high-volume intrathecal amitriptyline. Regional Anesthesia and Pain Medicine 29(5): 434-440. 2004.

    Sung B, Wang GK. Peripherally administered amitriptyline derivatives have differential anti-allodynic effects in a rat model of neuropathic pain. Neuroscience Letters 357(2): 115-118. 2004.

    Tanaka M, Watanabe S, Endo T, Okane M, Hamaya Y. Combination of epidural morphine and fentanyl for postoperative analgesia. Regional Anesthesia 16(4): 214-217. 1991.

    Teng J, Mekhail, N. Neuropathic pain: mechanisms and treatment options. Pain Practice 3(1): 8-21. 2003.

    Tetzlaff JE. The pharmacology of local anesthetics. Anesthesiology Clinics of North America 18(2): 217-233. 2000.

    Thalhammer JG, Vladimirova M, Bershadsky B, Strichartz GR. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology 82(4): 1013-1025. 1995.

    Tominaga M. Nociception and TRP channels. Handb Exp Pharmacol(179): 489-505. 2007.

    Tremont-Lukats IW, Challapalli V, McNicol ED, Lau J, Carr DB. Systemic administration of local anesthetics to relieve neuropathic pain: A systematic review and meta-analysis. Anesthesia and Analgesia 101(6): 1738-1749. 2005.

    Trube G, Netzer R. Dextromethorphan: Cellular Effects Reducing Neuronal Hyperactivity. Epilepsia 35: S62-S67. 1994.

    Tzeng JI, Cheng KI, Huang KL, Chen YW, Chu KS, Chu CC, Wang JJ. The cutaneous analgesic effect of class I antiarrhythmic drugs. Anesthesia and Analgesia 104(4): 955-958. 2007.

    Wall PD. The prevention of postoperative pain. Pain 33(3): 289-290. 1988.

    Waterman NG, Hughes S, Foster WS. Control of cancer pain by epidural infusion of morphine. Surgery 110(4): 612-616. 1991.

    Wedel DJ, Horlocker TT. Nerve Blocks. In: Miller RD (editor), Miller's Anesthesia. Chapter 52. Churchill Livingstone, Orlando, Florida, pp. 1639-1674. 2009.

    Wiles MD, Nathanson MH. Local anaesthetics and adjuvants - future developments. Anaesthesia 65: 22-37. 2010.

    Wilson JA, Garry EM, Anderson HA, Rosie R, Colvin LA, Mitchell R, Fleetwood-Walker SM. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists. Pain 117(3): 421-432. 2005.

    Wood JN, Baker M. Voltage-gated sodium channels. Current Opinion in Pharmacology 1(1): 17-21. 2001.

    Woolf CJ, Chong MS. Preemptive analgesia-treating postoperative pain by preventing the establishment of central sensitization. Anesthesia and Analgesia 77(2): 362-379. 1993.

    Woolf CJ, Salter MW. Neuroscience - Neuronal plasticity: Increasing the gain in pain. Science 288(5472): 1765-1768. 2000.

    Woosley RL, Funckbrentano C. Overview of the clinical-pharmacology of antiarrhythmic drugs. American Journal of Cardiology 61(2): A61-A69. 1988.

    無法下載圖示 校內:2018-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE