簡易檢索 / 詳目顯示

研究生: 蘇進祿
Su, Jin-Luh
論文名稱: 以資料包絡分析法評估 鋼鐵產業經營績效之研究
Performance Evaluation of Steel Industry by Data Envelopment Analysis (DEA)
指導教授: 吳萬益
Wu, Wann-Yih
學位類別: 碩士
Master
系所名稱: 管理學院 - 高階管理碩士在職專班(EMBA)
Executive Master of Business Administration (EMBA)
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 經營績效資料包絡分析法競爭力風險預知領導人
外文關鍵詞: DEA, performance, competitive, risk estimate, leader
相關次數: 點閱:103下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鋼鐵產業在經過1996~2001年間最長的一次景氣低迷期後,誰也沒料到會在2002年後迅速復甦,並在2004年初創造前所未有的需求量與高價位。依據IISI(國際鋼鐵協會)之預測,在未來幾年,由於大陸與印度的經濟發展,鋼鐵業仍然是傳統產業中具有穩定成長的行業。台灣在世界鋼鐵產量之比重目前僅佔2%,但在世界排名卻佔第12位,在亞洲地區,僅次於大陸、日本與韓國。
      面對未來鋼鐵的需求與成長,不管國內外在最近均有各項投資計劃。依據景氣循環,每個行業會在3~5年感受到一次的繁榮與哀退。為了因應不景氣時期的考驗,或在景氣好時把握獲利機會,企業必需了解本身的經營績效與同業間的差異,並設法提升自己的經營績效。
      本研究採用資料包絡分析法(DEA),對18家鋼鐵廠(含國內12家及日本韓國6家)進行經營績效之評估:選擇各公司之員工人數、總資產、原料用量及加工成本做為投入項目,而以營業額及稅後盈餘做為產出項目,經由DEAP軟體之運算,得到各廠家之效率值分析結果,包含效率單位之分類,各廠家之最佳投入量與改善量。為使分析更為可靠亦進行敏感度分析。
      經營績效之評估除由DEA方法做有形之數字評估外,亦藉由專家訪談尋找無形之影響因素,包括管理、業務、財務及領導人等之關係。綜合本研究之結果獲得以下之結論:
    1. 我國鋼鐵業有一半左右仍具有國際競爭力,唯企業經營
    不進則退,仍應不斷成長與改善才能面對未來的競爭並
    獲取更大的利潤。
    2. 投資鋼鐵業(電爐煉鋼廠)必需考慮產品結構並依據本身
    能力及市場分析決定生產規模。
    3. 要獲得良好的經營績效需具備之條件有:生產效率佳、
    採購之判斷與決策、銷售制度與風險預知、健全的財務
    與優質的領導人等。

      After the severe recession in 1996-2001, the steel industry demonstrated an impressively strong rebound in 2002, and it further reaches unprecedented high demand and price in 2004. According to the prediction by IISI, in consideration of economic booming in mainland China and India in next few years, the steel industry is expected to enjoy stable growth in the near future. Taiwan steel production accounts for 2% among the worldwide capacity, and ranks the 12th, following after mainland China, Japan and Korea in Asian region.
      Numerous investments are planned in both Taiwan and overseas to cope with the rising demand and growth of steel in the future. It is observed that a cycle of rise and fall will occur in every industry. To encounter the challenge in recession, or to seize the right opportunity in the boom, every corporation must understand their differentiation from other competitors, and strive to improve their performance.
      With application of Data Enevelopment Analysis (DEA) approach, this study conducts performance analysis among eighteen steel mills, which consists of twelve in Taiwan, and six in Japan and Korea. The input factors include the number of staff, total assets, raw material usage and processing costs; the output factors are total revenue and net profit after tax. While interacting the above factors and calculated by DEAP, performance efficiency results for each steel mills are measured, including category of efficiency unit, the best inputs in each steel mills. A sensitive analysis has also been conducted to achieve more accuracy.
      In addition to measurement from DEA analysis, performance analysis are also associated with other intangible factors, such as management, sales team, financial and leaders. The outlines of conclusion drawn from the study are as follow:
    1. Around half of steel mills in Taiwan are very
    competitive worldwide. However, to cope with the
    fast shifting environment, continuous
    improvement and growth is the only way to
    survive and make profit in the future.
    2. Investment of steel mills should consider
    product mix, and determine the scale of
    production output based on existing capablity
    and market analysis.
    3. The essential criterion to achieve better
    performance comprise satisfactory production
    efficiency, purchase policy, sales system and
    risk estimate, solid financial structure,
    excellent leader, and so on.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究對象及範圍 3 第四節 研究流程 3 第五節 論文結構 4 第二章 台灣鋼鐵產業分析 6 第一節 台灣鋼鐵產業環境概述 6 第二節 煉鋼產業投入產出流程分析 10 第三章 文獻探討 21 第一節 經營績效 21 第二節 資料包絡分析法 28 第三節 資料包絡分析法在各產業的應用 36 第四章 研究設計與方法 42 第一節 研究架構 42 第二節 DEA使用程序 43 第三節 研究對象之選取 44 第四節 投入產出項之選取 46 第五節 因素之檢視 48 第六節 DEA模式之選取 49 第七節 DEA模式結果之分析方法 50 第五章 實証分析與研究結果 53 第一節 資料收集與整理 53 第二節 DEA模式分析結果 59 第三節 專家訪談結果分析 70 第六章 結論與建議 75 第一節 結論 75 第二節 後續研究者的建議 78 參考文獻 79

    一、中文部分
    1.台灣區鋼鐵工業同業公會(1993),「台灣鋼鐵三十年」。台北,鋼鐵公會。
    2.台灣區鋼鐵工業同業公會(2003),「台灣鋼鐵2003」。台北,鋼鐵公會。
    3.李文瑞(2002),「以資料包絡分析法探討台灣紡織纖維業之經營績效」,國立成功大學
    工業管理科學研究所在職專班碩士論文。
    4.林世磬(2003),「以資料包絡分析法評估我國紡織業經營績效之研究-國內五十家上市
    公司之實證」,私立實踐大學企業管理研究所碩士論文。
    5.吳萬益、林清河(2002),, “行銷研究”,華泰圖書出版公司。
    6.洪海玲(2001),「以資料包絡分析法作製造業之營運效率分析」,,國立成功大學工業
    管理研究所碩士論文。
    7.翁興利,李豔玲,潘婉如(1996),「相對效率的評估-DEA的運用」,公共行政評論,第
    五卷第四期,頁63-106。
    8.高強、黃旭男、Toshiyuki Sueyoshi(2003),「管理績效評估-資料包絡分析法」,華泰文
    化事業公司。
    9.張世其,李宗耀,虞孝成(2003),「我國IC設計上市公司經營效率之分析」,產業論
    壇,第五卷第一期。
    10.張錫峰、周齊武(1992),「資料包絡分析及其在效率評估上之應用」,會計評論,第二
    十六期,頁76-92。
    11.郭雍信(2002),「資料包絡分析法應用於科技研發專案計畫績效評估之研究-以XX科學
    研究院為例」,國防管理學院資源管理研究所碩士論文。
    12.陳再來(2001),「投資及經營分析」,翰蘆圖書出版公司。
    13.陳禹廷(2002),「我國產險業經營績效之研究-資料包絡分析法之應用」,朝陽科技大
    學/保險金融管理研究所碩士論文。
    14.陳益華(1995),「我國電信事業經營績效評估-資料包絡分析法之應用」,國立中山大
    學企業管理研究所碩士論文。
    15.陳澄隆(2000),「國內定期航運公司營運績效之研究-應用資料包絡分析法」,國立交
    通大學交通運輸研究所碩士論文。
    16.游聲裕(1999),「我國電腦及週邊產業企業經營績效剖析」,國立成功大學企業管理研
    究所碩士論文。
    17.黃金成(2001),「科學園區資源投入產出效率和產業引進策略之研究-以DEA和AHP方法
    分析」,國立成功大學國際企業研究所碩士論文。
    18.黃暄仁(2000),「利用包絡分析法決標竿目標與標竿夥伴:以全球32大鋼鐵廠為例」,
    國立成功大學國際企業研究所碩士論文。
    19.葉士群(2002),「台灣ISP產業經營績效之研究-運用資料包絡分析法」,私立真理大
    學管理科學研究所碩士論文。
    20.盧冠嘉(2002)「台灣生物科技公司經營效率之研究」,國立政治大學企管研究所碩士論
    文。
    21.賴仁基(1997),「我國綜合大學效率差異之衡量─資料包絡分析的應用」,國立政治大
    學財政學研究所碩士論文。
    22.謝明瑞(2001),「台灣鋼鐵業的發展」,財團法人國家政策研究基金會國政研究報告。
    23.顏旭良(1998),「台灣高科技產業經營績效評估與其資源配置特性之關係研究-以新竹
    科學工業園區為例」,國立成功大學企業管理學研究所碩士論文。
    24.魏嘉慧(2002),「國內育成中心經營績效之評估-資料包絡分析法之應用」,私立實踐
    大學企業管理研究所碩士論文。
    25.龔良智(1999),「DEA模型應用於台電配電技術部門績效評估之研究」,國立交通大學
    經營管理研究所碩士論文。
    二、英文部分
    1.Banker, R.D., Charnes, A., and Cooper, W.W. (1984). “Some models for
    estimating technical and scale inefficiencies in data envelopment analysis,”
    Management Science, 30, pp. 1078-1092.
    2.Berg, S.A., Forsund, F.R., and Jansen, E.S. (1991). “Malmquist indices of
    productivity growth during the deregulation of Norwegian banking 1980-89,”
    Working Paper, Research Department, Norges Bank, Oslo, 1991/2, pp. 1-29.
    3.Campbell, J.P. (1977). On the Nature of Organizational Effectiveness. In P.S.
    Goodman and J.M. Pennings (Eds.), New Perspectives on Organizational
    Effectiveness (pp .13-55). San Francisco: Jossey-Bass.
    4.Chandra, P., Cooper, W.W., and Rahman, A. (1998). “Using DEA to evaluate 29
    Canadian textile companies: Considering returns to scale,” International
    Journal of Production Economics, 54, pp. 129-141.
    5.Charnes, A., Cooper, W.W., and Rhodes, E. (1978). “Measuring the efficiency of
    decision making units,” European Journal of Operational Research, 2 (6), pp.
    429-444.
    6.Chen, T.Y., and Yeh, T.L. (1998). “A study of efficiency evaluation in
    Taiwan’s banks,” International Journal of Service Industry Management, 9 (5),
    pp. 23-40.
    7.Cooper, W.W., Deng, G., Gu, B., Li, S., and Thrall, R.M. (2001). “Using DEA to
    improve the management of congestion in Chinese industries (1981-1997).”
    Socio-Economic Planning Sciences, 35, pp. 227-242.
    8.Despotis, D. K. and Smirlis, Y. G.(2002) “Data Envelopment Analysis with
    Imprecise Data,” European Journal of Operational Research, Vol.140, pp.24-36.
    9.Dess, G.G., and Robinson, R.B. Jr. (1984). “Measuring organizational
    performance in the absence of objective measures: The case of the
    privately-held firm and conglomerate business unit.” Strategic Management
    Journal, 5 (3), pp. 265-273.
    10.Doyle, J.R., and Grew, R.H. (1991). “Comparing products using data
    envelopment analysis,” Omega, 19 (6), pp. 631-638.
    11.Fare, R., Grosskopf, S., Lindgren B., and Roos, P., (1992). “Productivity
    changes in Swedish pharmacies 1980-1989: A nonparametric malmquist approach",
    Journal of Productivity Analysis, 3, pp.85-101.
    12.Farrell, M.J. (1957). “The measurement of productive efficiency.” Journal of
    the Royal Statistical Society Series A Part III, pp.253-290.
    13.Fizel, J.L., and Nunnikhoven, T.S. (1992). “Technical efficiency of
    for-profit and non-profit nursing homes,” Managerial and Decision Economics,
    13, pp. 429-439.
    14.Golany, B., and Roll, Y. (1989), “An application procedure for data
    envelopment analysis.” Omega, 17(3), pp. 237-250.
    15.Haag, S., Jaska, P., and Semple, J. (1992). “Assessing the relative
    efficiency of agricultural production units in the Blackland Prairie, Texas,”
    Applied Economics, 24(5), pp. 559-565.
    16.Hertenstein, J.H., and Platt, M.B. (2000). “Performance measures and
    management control in new product development.” Accounting Horizons,
    Sarasota.
    17.Hibiki, N. and Sueyoshi, T.(1999) “DEA Sensitivity Analysis by Changing a
    Reference Set: Regional Contribution to Japanese Industrial Development,”
    OMEGA: International Journal of Manaement Science, 27, pp.139-153.
    18.Hwang, S. N. and Chang, T. Y. (2003) “Using Data Envelopment Analysis to
    Measure Hotel Managerial Efficiency Change in Taiwan.” Tourism Management,
    24, pp. 357-369.
    19.Kittelsen, S.A.C., and Forsund, F.R. (1992). “Efficiency analysis of
    Norwegian district courts,” Journal of Productivity Analysis, 3, pp. 277-306.
    20.Lewin, A.Y., and Minton, J.W. (1986). “Determining organization
    effectiveness: Another look and an agenda for research,” Management Science,
    32(5), pp.514-538.
    21.Lewin, A.Y., Morey, R.C. and Cook, T.J. (1982), “Evaluation the
    administrative efficiency of courts,” Omega, 10(4), pp. 401-411.
    22.Norman M., and Barry, S. (1991). “Data envelopment analysis: The assessment
    of performance, NY: John Wiley and Son.
    23.Ramanujan, V., and Venkatrtraman, N. (1986). “Measurement of Business
    Performance on Strategy Research: A Comparison of Approaches,” Academy of
    Management Review, 11(4), pp.801-814.
    24.Sherman, H.D. (1984). “Improving the productivity of service businesses,”
    Sloan Management Review, 25, Spring, pp.11-23.
    25.Shin, H., Collier, D.A., and Wilson, D.D. (2000). “Supply management
    orientation and supplier/buyer performance,” Journal of Operations
    Management, 18 (3), pp. 317-333.
    26.Steers, R.M. (1975). “Problems in the measurement of Organizational –
    effectiveness” Administrative Science Quarterly, 20, pp.546-557.
    27.Sueyoshi, T.(2000) “Stochastic DEA for Restructuring Strategy: An Application
    to a Japanese Petroleum Company,” OMEGA: International Journal of Management
    Science, 28, pp. 385-398.
    28.Szilagyi, A.D. (1981). “Management and performance.” Goodyear Publishing
    Company Inc., California.
    29.Tavares, G.(2002) A Bibligraphy of Data Envelopment Analysis (1978-2001),
    Technical Report RRR 01-02,RUTCOR, Rutgers Univ., Piscataway, N.J.
    30.Thompson, R.G., Greffe, R., and Grant, K.C. (1986). Application of Data
    Envelopment Analysis to Management Audits of Electric Distribution Utilities,
    Unpublished Report, Public Utility Commissim of Texas, Austin, Texas.

    下載圖示 校內:立即公開
    校外:2004-06-29公開
    QR CODE