| 研究生: |
陳勁宇 Chen, Chin-Yu |
|---|---|
| 論文名稱: |
三五族垂直式共振腔面射型雷射之研製 Investigation and Fabrication of III-V Vertical Cavity Surface Emitting Lasers (VCSELs) |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 氮化鎵 、砷化鎵 、垂直式共振腔面射型雷射 |
| 外文關鍵詞: | GaN, GaAs, VCSEL |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主要研究目的在於探討氮化鎵以及砷化鎵兩種材料為主的面射型雷射。文中利用模擬軟體來做元件設計並加以改善後,藉以分別製作出光激發藍綠光氮化鎵垂直式共振腔面射型雷射及電激發砷化鎵氧化侷限面射型雷射。
在氮化鎵雷射部分,首先針對主動層的設計作模擬,探討不同銦含量對主動層發光波長的影響,同時比較不同量子井寬度、量子障壁寬度與材料增益之間的差異。在元件反射鏡方面,設計分為兩種結構。其一是上下皆採用由二氧化鈦及二氧化矽所組成的介電質布拉格反射鏡,並在不同對數下作反射率的比較。另一則是採用金屬銀和鋁作為上反射鏡,而下反射面則採用介電質布拉格反射鏡。整體元件直徑大小設計為10微米,其共振腔長度、各層材料厚度及摻雜濃度透過模擬軟體微調後完成並使元件達到雷射狀態。在設計中使元件主動層位於模擬光場之波腹處,藉以增加光子及載子複合。而氧化銦錫由於吸收較高,將其設計於駐波節點以減少光學吸收。上述分別由兩種不同反射鏡所組成之氮化鎵雷射電壓、電流、光強度、發光頻譜等模擬結果也在文中作討論比較。
於實作方面,則採用上述之混合式金屬─布拉格反射鏡共振腔結構。首先探討金屬銀、鋁反射鏡於不同鍍率下其反射率及表面粗糙度間的差異。在分析金屬共振腔光譜的研究中,我們也發現此種結構能有效的提供光學侷限環境。此外,元件尺寸減小則有益於提升光學特性,且對旁模抑制有顯著的效果,但尺寸縮減也意味著製程困難度的增加。而在製作完整元件後,我們進行布拉格反射鏡之反射頻譜分析,並透過微光激發光譜儀在低溫77 K的量測,發現在輸入功率密度為20.8 kW/cm2時,元件可能已達到雷射狀態,發出的兩雷射波長位於531.2及532.2奈米處。
而在砷化鎵雷射部分,其模擬設計概念與前述氮化鎵之模擬相同。在製作元件前,實驗先針對砷化鎵側壁蝕刻參數作最佳化,我們發現氯氣對於蝕刻垂直度扮演重要的角色。而不同溫度下之蝕刻、負載效應也在本文中作探討。最後,電激發砷化鎵雷射元件成功製作完成。藉由電激發光量測系統在室溫下量測,發現元件於輸入電流約1.4毫安培時已達到雷射狀態,雷射波長為847.06奈米。然而隨著電流增加,旁模亦隨之出現。此外,在實驗中也觀察到紅移效應產生,雷射基模隨著電流加大而向長波長移動,這是由於元件的熱能造成能帶變小,使發光波長變長所致。
The main purpose of this thesis is to investigate the GaN-based and GaAs-based surface emitting laser. We make use of the simulation tool to design the whole device and improve its performance, with a view to developing the optically pumped blue-green GaN-based vertical cavity surface emitting lasers (VCSELs) and electrically pumped GaAs-based oxide confined surface emitting lasers.
As for GaN-based laser, first we do the simulation and design the active region to investigate how the amount of indium influences the emitting wavelength. In addition, we make a comparison between the different width of quantum well, barrier and material gain. In respect of reflection mirror, there are two designs. For the first design, titanium oxide (TiO2) and silicon oxide (SiO2) are employed to produce both top and bottom distributed Bragg reflectors (DBRs). We also discuss the reflectivity variation with different pairs of DBRs. For the other devisal, metal film of silver as well as aluminum, and TiO2/SiO2 DBRs are utilized to form the top and bottom mirrors, respectively. The diameter of the device is designed to be 10 μm, and the cavity length, the thickness as well as the doping level of each layer are optimized and simulated to make lasing achieved. A general idea of the design is to make multiple quantum wells (MQWs) located at an antinode of light field for enhancing the coupling of photon and carriers, and have indium tin oxide (ITO) situated at a node of the optical standing wave for minimization of absorption loss. The GaN-based lasers composed of two different mirrors mentioned above are characterized in the simulation results, inclusive of turn on voltage, threshold current, light intensity and emitting wavelength.
On the processing part, we apply the hybrid metal-DBR mirror mentioned above to form the cavity. To begin with, we make a survey on the relationship between the reflectivity and surface roughness of silver/aluminum film under different deposition rate. In respect of research on the metal cavity under optical pumping at 77 K, we find that the structure can provide a good optical confinement. Besides, shrinking the device size can not only enhances the optical performance but also helps in the suppression of satellite modes. After the fabrication process, we analyze the reflectivity spectrum of DBRs. The demonstration of the optically pumped VCSEL suggests that lasing is likely to be achieved at an input power density of 20.8 kW/cm2 by micro-photoluminescence spectrometer under 77 K with two lasing peaks located at 531.2 and 532.2 nm.
As for GaAs-based laser, the simulation design concept is similar to that mentioned above. Before the device fabrication, an experiment is conducted to optimize the etching parameters for GaAs-based VCSEL so as to attain a better vertical confinement. It is observed that chlorine (Cl2) plays an important role in the GaAs etching process for vertical confinement. Furthermore, the influence of temperature on GaAs etching and loading effect are also considered in the article. At last, room temperature current injected GaAs-based oxide confined VCSEL is successfully fabricated. By electroluminescence measurement, we find that lasing is achieved at the threshold current of 1.4 mA, beyond which a lasing peak emerges at 847.06 nm with a gradual red-shift, and satellite modes appears as the driving current increases. Red-shift can be attributed to the raised temperature which brings about the shrinkage in semiconductor band gap.
[1] T. C. Lu, J. R. Chen, H. C. Kuo, C. C. Kuo, C. C. Lee, S. C. Wang, “Development of GaN-based vertical-cavity surface-emitting lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 850–859, May–Jun. 2009.
[2] T. C. Lu, T. T. Wu, S. W. Chen, P. M. Tu, Z. Y. Li, C. K. Chen, C. H. Chen, H. C. Kuo, S. C. Wang, H. W. Zan, and C. Y. Chang, “Characteristics of current injected GaN-based vertical-cavity surface emitting lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1594–1602, Nov.–Dec. 2011.
[3] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., vol. 69, pp. 4056–4058, 1996.
[4] K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1201–1215, Nov. 2000.
[5] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810–1824, Oct. 1997.
[6] E. Towe, R. F. Leheny, and A. Yang, “A historical perspective of the development of the vertical-cavity surface-emitting laser,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1458–1464, Nov./Dec. 2000.
[7] T. C. Lu, T. T. Wu, S. W. Chen, P. M. Tu, Z. Y. Li, C. K. Chen, C. H. Chen, H. C. Kuo, S. C. Wang, H. W. Zan, and C. Y. Chang, “Characteristics of current injected GaN-based vertical-cavity surface emitting lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1594–1602, Nov.–Dec. 2011.
[8] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, “An optically pumped GaN-AlGaN vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 69, pp. 1–3, 1996.
[9] T. Someya, K. Tachibana, J. Lee, T. Kamiya, and Y. Arakawa, “Lasing emission from an In0.1Ga0.9N vertical cavity surface emitting laser,” Jpn. J. Appl. Phys., vol. 37, pp. L1424–L1426, 1998.
[10] Y. K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys.Lett., vol. 74, pp. 3441–3443, 1999.
[11] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science, vol. 285, pp. 1905–1906, 1999.
[12] J. F. Carlin, J. Dorsaz, E. Feltin, R. Butt´e, N. Grandjean, M. Ilegems, and M. La¨ugt, “Crack-free fully epitaxial nitride microcavity using highly reflective AlInN/GaN Bragg mirrors,” Appl. Phys. Lett., vol. 86, pp. 031107-1–031107-3, 2005.
[13] H. Zhou, M. Diagne, E.Makarona, A. V. Nurmikko, J. Han, K. E.Waldrip, and J. J. Figiel, “Near ultraviolet optically pumped vertical cavity laser,” Electron. Lett., vol. 36, no. 21, pp. 1777–1779, Oct. 2000.
[14] S. H. Park, J. Kim, H. Jeon, T. Sakong, S. N. Lee, S. Chae, Y. Park, C. H. Jeong, G. Y. Yeom, and Y. H. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett., vol. 83, pp. 2121–2123, 2003.
[15] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, and T. Saitoh, “Low threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors,” Appl. Phys. Lett., vol. 83, pp. 830–832, 2003.
[16] E. Feltin, G. Christmann, J. Dorsaz, A. Castiglia, J. F. Carlin, R. Butt´e, N. Grandjean, S. Christopoulos, G. Baldassarri, H. von H¨ogersthal, A. J. D. Grundy, P. G. Lagoudakis, and J. J. Baumberg, “Blue lasing at room temperature in an optically pumped lattice-matched AlInN/GaN VCSEL structure,” Electron. Lett., vol. 43, no. 17, pp. 924–926, Aug. 2007.
[17] J. T. Chu, T. C. Lu, H. H. Yao, C. C. Kao, W. D. Liang, J. Y. Tsai, H. C. Kuo, and S.-C. Wang, “Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off,” Jpn. J. Appl. Phys, vol. 45, pp. 2556–2560, 2006.
[18] J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 89, pp. 121112-1–121112-3, 2006.
[19] C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H.W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, and S. C.Wang, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5 /SiO2 distributed Bragg reflector,” Appl. Phys. Lett., vol. 87, pp. 081105-1–081105-3, 2005.
[20] C. C. Kao, T. C. Lu, H. W. Huang, J. T. Chu, Y. C. Peng, H. H. Yao, J. Y. Tsai, T. T. Kao, H. C. Kuo, S. C. Wang, and C. F. Lin, “The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN-GaN and Ta2O5 -SiO2 distributed Bragg reflectors,” IEEE Photon. Technol. Lett., vol. 18, no. 7, pp. 877–879, Apr. 2006.
[21] S. C. Wang, T. C. Lu, C. C. Kao, J. T. Chu, G. S. Huang, H. C. Kuo, S. W. Chen, T. T. Kao, J. R. Chen, and L. F. Lin, “Optically pumped GaN-based vertical cavity surface emitting lasers: Technology and characteristics,” Jpn. J. Appl. Phys., vol. 46, pp. 5397–5407, 2007.
[22] T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 92, pp. 141102-1–141102-3, 2008.
[23] Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Exp., vol. 1, pp. 121102-1–121102-3, 2008.
[24] K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, “Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN substrate,” Appl. Phys. Exp., vol. 2, pp. 052101-1–052101-3, 2009.
[25] T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett., vol. 97, pp. 071114-1–071114-3, 2010.
[26] D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature,” Appl. Phys. Exp., vol. 4, pp. 072103-1–072103-3, 2011.
[27] C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Exp., vol. 5, pp. 092104-1–092104-3, 2012.
[28] T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron., vol. 48, no. 9, pp. 1107–1111, Sep. 2012.
[29] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, “ Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, pp. 366–368, Nov. 1, 1962
[30] N. Holonyak Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, pp.82–83, 1962.
[31] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill Jr. and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett., vol. 1, pp.62–64, 1962.
[32] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter and H. J.Zeiger, “Semiconductor laser of GaAs,” Appl. Phys. Lett., vol. 1, pp.91–92, 1962.
[33] N. Holonyak Jr., “The semiconductor Laser : A thirty-five-year prospective,” Proc. IEEE, vol. 85, no.11, pp. 1678–1693, Nov. 1997.
[34] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329–2330, 1979.
[35] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp. 348–350, 1984.
[36] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 55, pp. 221–222, 1989.
[37] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett., vol. 31, pp. 208–209, 1995.
[38] B. Weigl, M. Grabherr, G. Reiner, and K. J. Ebeling, “High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers,” Electron. Lett., vol. 32, pp. 557–558, 1996.
[39] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett., vol. 65, pp. 97–99, 1994.
[40] M. H. MacDougal, P. D. Dapkus, V. Pudikov, H. Zhao, and G. M. Yang, “Ultralow threshold current vertical-cavity surface emitting lasers with AlAs-oxide-GaAs distributed Bragg reflectors,” IEEE Photon. Technol. Lett., vol. 7, pp. 229–231, 1995.
[41] Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “Record low-threshold index-guided In-GaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure,” Electron. Lett., vol. 31, pp. 560–561, 1995.
[42] 盧廷昌, 王興宗, “半導體雷射導論”, 五南圖書出版社, pp. 298–300, 2008
[43] 盧廷昌, 王興宗, “半導體雷射技術”, 五南圖書出版社, pp. 15–19, 174–181, 186, 2010
[44] C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett., vol. 96, pp. 251101-1–251101-3, 2010.
校內:2024-12-31公開