簡易檢索 / 詳目顯示

研究生: 楊豐榮
Yang, Feng-Rong
論文名稱: 山岳隧道開挖湧水及其對鄰近水文環境影響之研究
Assessment of Tunnel Inflow and Its Impact on Adjacent Hydrological Environment under Tunneling Construction
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 191
中文關鍵詞: 地下水流動隧道湧水MODFLOW裂隙岩體水文地質概念模型
外文關鍵詞: fractured rock, tunnel inflow, MODFLOW, hydrogeological conceptual model, groundwater flow
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區因雨量充沛,且位於歐亞板塊與菲律賓板塊交接處,活躍的造山運動造成岩層之破碎度高而節理發達,故地表水易沿地質弱面滲入岩層,以致岩盤中之地下水儲量豐富。根據近年來台灣有關山岳隧道工程經驗顯示,隧道施工時除因大量湧水造成施工困難外,亦常因地下水流失引發鄰近區域水文環境之爭議。
    本研究結合曾文水庫越域引水隧道工程案例場址之地理、地層、地質構造及地下水文條件,應用三維地下水分析程式GMS建立一套評估隧道開挖湧水及其對鄰近水文環境影響之數值分析模式,該模式將複雜的物理環境簡化為水文地質概念模型,並透過水平衡及地下水流動方程式等數學原理模擬隧道開挖後地下水之流場變化。本文分別針對:(1)山岳隧道工程之水文地質現地試驗技術、(2)結合地形、地層、地質構造及地下水文條件之水文地質概念模型建立、(3)三維水文地質數值模式之分析、(4)模式率定與驗證、及(5)隧道開挖湧水及其對鄰近水文環境影響分析等項目詳加探討。
    為確保模式之準確度與正確性,本文透過地下水水位監測資料進行模式率定,並藉由實際工程湧水量量測資料驗證模式之正確性。最終應用本模式模擬隧道開挖對鄰近區域水文環境之影響、對鄰近溫泉區地下水位之影響及預測隧道施工期間可能遭遇之湧水量,模式分析成果可提供工程實務參考運用。
    研究成果顯示,山岳地區岩層之透水性質主要受裂隙或破碎帶之連通性主導,若連通性不良時,岩盤之透水性才由岩性所主導。而隧道開挖對研究區域內地下水流動之影響於岩覆較高及斷層破碎帶較為顯著,其餘區域影響甚微。
    隧道湧水量分析部分,建議施工應於高岩覆、高破碎帶,例如高中斷層,應儘早備妥排水及抽水設施與方案,以避免工程意外發生。東隧道施工若持續任其湧水而不做止水措施,將造成少年溪溫泉露頭之乾涸及溫泉區地下水位之顯著洩降,預估地下水位將於1年後洩降約達1m,2年後洩降約達2 m至3m,此影響不可不慎。分析顯示倘若採適當的止水措施,則溫泉區之地下水位影響可控制在洩降0.5m內。至於鄰近水文環境影響部分,評估結果顯示東隧道東口年總出水量為210萬噸,預估終期將達612萬噸,相較於荖濃溪右岸集水區之地下水年補注量約3.3億噸,僅約1.85%,就水量觀點而言,本案例隧道開挖對區域水文環境之影響甚微。本研究建議之山岳隧道水文地質概念模式,經以實測地下水位及湧水量進行率定與驗證,結果顯示具相當可靠度及準確度。

    Taiwan is located at an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin in which fissures, joints, beddings, and even faults prevail in most of mountainous areas. While existing joints and fractures provide ideal conduits for water to flow, large volumes of groundwater are stored in aquifers in which water inflows are often encountered during tunneling. Recently, several case studies of tunneling in Taiwan demonstrate that the water inflow is the major cause for the failure. As a consequence of groundwater loss, the problem of environmental arguments may also arise.
    In this paper, a case study of Tsengwen reservoir transbasin diversion tunnel with emphasis on the topics of hydrogeology was presented. Several major issues, including (1) the hydrogeological field testing technique, (2) the establishment of conceptual model, (3) the modeling of three-dimensional groundwater flow, (4) the calibration and verification of the conceptual model, (5) the prediction of tunnel inflow, were introduced. The application of each approach was described in details. It is believed that the predicted results may provide useful information for reducing the uncertainties of tunnel inflow and may also clarify the impact of environment issues. The regional and local 3-D hydrogeological conceptual models were employed successfully to evaluate the influence of tunnel construction on groundwater in the neighboring region and to predict inflow rate during tunnel construction for the “Tseng-Wen Reservoir Transbasin Diversion Project”.
    The groundwater modeling software package Groundwater Modeling System (GMS), which supports the groundwater numerical codes MODFLOW, was utilized to determine the impact of tunneling excavation on the hydrogeological environment in a regional area around the tunnel and a local hot springs area, at the “Tseng-Wen Reservoir Transbasin Diversion Project”, in Taiwan. A hydrogeological conceptual model was first developed to simplify structures related to the site topography, geology and geological structure. The MODFLOW code was then applied to simulate groundwater flow pattern for the hydrogeological conceptual model in the tunnel area. The automated parameter estimation method was applied to calibrate groundwater level fluctuation and hydrogeological parameters in the region. Calibration of the model demonstrated that errors between simulated and monitored results are smaller than allowable errors. The study also observed that tunneling excavation caused groundwater to flow toward the tunnel. Furthermore, the MODFLOW code for solving 3-D groundwater flow problems, in which hydrogeological characteristics are integrated into a geographic information system (GIS), is applied to evaluate the impact of tunnel construction on an adjacent hot spring. Finally, the groundwater flow obtained via the GMS indicated that the hydrogeological conceptual model can estimate the possible quantity of tunnel inflow and the impact of tunnel construction on the regional and local groundwater resources regime of the transbasin diversion project. The proposed model provides information critical to engineering design and should be adopted for engineering projects of a similar nature during construction planning and safety assessments.
    The following results can be obtained from regional and local 3D analyses using the hydrogeological conceptual model. (1) The impact of tunnel boring and construction on groundwater flow in the study region is significant for zones with thicker rock coverage and many fractured faults. (2) If the tunnel construction doesn’t prevent from the leaking of inflow, the groundwater drawdown depth of 3 m will occur after 2 years at the eastern of the East Tunnel near the hot springs area. But the groundwater drawdown can be kept less than 0.5 m with the appropriate grouting or lining to prevent from the leaking of inflow. (3) Total inflow quantity in the East Tunnel is less than 1.85% of the average annual recharge of Lao-Nong Creek basin, which is 330 million m3. Thus, the effect of tunnel construction onwater resources at the local hot spring area is insignificant.

    中文摘要 I 英文摘要 III 誌謝 VI 目錄 IX 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 5 1.3 論文架構 6 第二章 文獻回顧 7 2.1 國內外隧道湧水案例回顧 7 2.2 山岳隧道湧水分析方法回顧 14 2.2.1 水理統計法 16 2.2.2 水平衡法 16 2.2.3 解析法 18 2.2.4 水文地質類比法 19 2.2.5 施工超前預報法 20 2.2.6 數值分析法 21 2.2.7 高橋法 22 2.2.8 小結 24 2.3 山岳地區水文地質參數調查 28 第三章 研究步驟與方法 30 3.1 山岳地區水文地質基本資料蒐集 30 3.2 山岳地區水文地質分析模式選用 33 3.2.1 理論背景 33 3.2.2 裂隙岩體水文地質模式之比較與選用 40 3.3 水文地質參數評估 42 3.3.1 地下水文試驗種類 42 3.3.2 水文地質參數推估 47 3.3.3 地下水文地質試驗與參數推估流程 48 3.4 水文地質概念模型之建立 49 3.4.1 含水層之分區原則 49 3.4.2 含水層之分層原則 51 3.4.3 研究區域子集水區與地表水系劃分 53 3.4.4 地表地質與構造考量 54 3.4.5 邊界條件及初始條件訂定 55 3.4.6 地下水補注量推估 56 3.5 水文地質概念模型之率定 61 3.6 水文地質概念模型之驗證 63 3.7 水文地質模式分析 64 3.7.1 本研究採用之數值分析軟體 66 3.7.2 模式分析尺度轉換 67 第四章 現地水文地質試驗成果 69 4.1 研究場址描述 70 4.2 孔內岩體裂隙位態調查 76 4.3 孔內裂隙岩體水力試驗 98 4.4 水文地質參數分析成果 104 4.5 試驗成果綜整 109 第五章 研究案例 112 5.1 研究案例概述 112 5.1.1 研究區域之子集水區概述 113 5.1.2 研究區域之地質探查與水文地質特性概述 115 5.2 水文地質概念模型建立 123 5.2.1 地下水補注量推估 129 5.2.2 邊界條件設定 134 5.2.3 初始條件設定 135 5.2.4 水文地質參數選定 138 5.3 水文地質概念模型率定 140 5.4 水文地質概念模式之驗證 141 5.5 隧道開挖湧水量評估 142 5.5.1 開挖面之瞬間湧水量評估 143 5.5.2 開挖面之穩定湧水量評估 146 5.6 隧道開挖對鄰近溫泉之影響評估 152 5.6.1 少年溪溫泉區補注量之影響評估 153 5.6.2 少年溪溫泉區地下水位之影響評估 155 5.6.3 荖濃斷層區段止水措施之功效評估 161 5.7 隧道開挖對鄰近水文環境之影響評估 163 5.7.1 地下水流場之穩態分析成果 163 5.7.2 地下水流場之暫態分析成果 167 第六章 結論與建議 175 6.1 結論 175 6.2 建議 177 參考文獻 179 作者簡歷 189 學術著作 190

    1. Attanayake, P. M. and Waterman, M. K., (2006). Identifying environmental impacts of underground construction. Hydrogeology Journal, 14, pp. 1160-1170.
    2. Barenblatt, G. I., Zheltov, I. P., and Kochina, I. N. (1960). Basic conceptsin the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 24, 1286-1303.
    3. Barton, N.R., Bandis, S., and Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 121-140.
    4. Bear, J. (1979). Hydraulics of groundwater. McGraw-Hill.
    5. Blainey, J. B., Faunt, C. C. and Hill, M. C. (2006). A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System. Nevada and California, Open-File Report 2006-1104, USGS, USA.
    6. Bouwer, H. and Rice, R. C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Res. Research, 12(3), 423-28.
    7. Chen, W. P., and Lee, C. H. (2003). Estimating ground-water recharge from streamflow records. Environmental Geology, 44, 257-265.
    8. Darcy, H. P. G. (1856). Lesfontaines publiques de la Ville de Dijon. Victor Dalmont, Paris.
    9. Doherty, J. (1999). PEST: Model Independent Parameter Estimation. Watermark Computing, Townsville.
    10. El Tani, M. (2003). Circular Tunnel in a Semi-infinite Aquifer, Tunnelling and Underground Space Technology. 18(1), 19-55.
    11. Elsworth, D. (1986). A model to evaluate the transient hydraulics response of three dimensional sparsely fractured rock masses. Water Resources Research, 22(13), 1809-1815.
    12. Environmental Modeling Research Laboratory (EMRL) (2005). GMS 5.0 Tutorials, Brigham Young University, U.S.A.
    13. Freeze, R. A. and Cherry, J. A., (1979). Groundwater. Prentice-Hall.
    14. Goodman, R. (1965). Groundwater Inflows during Tunnel Driving. Engineering Geology, 2(2), 39-56.
    15. Hakami, E. and Larsson, E. (1996), Aperture Measurements and Flow Experiments on Single Natural Fracture. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 33(4), 395-404.
    16. Harbaugh, A. W., MODFLOW-2005 (2005). The U.S. Geological Survey Modular Ground-Water Model—the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16, USGS, USA.
    17. Hubbert, M. K. (1940). The theory of ground water motion. J. Geology, 48(8), Pt.1, pp. 785-944.
    18. Jacob, C. E., and Lohman, S. W. (1952). Nonsteady flow to a well of constant Drawdown in an extensive aquifer. American Geophysical Union Transactions, 33(4), pp. 552-569.
    19. Karlsruhe, K. (2001). Water control when tunneling under urban areas in the Olso region. NFF publication, 12(4), 27–33.
    20. Knisel, W. G. and Sheridan, J. M. (1983). Procedure for characterizing hydrologic processes in the Coastal Plain of the southeastern United States. In: Proc., Internatl. Symp. Hydrology of Large Flatlands, UNESCO-CONAPHI, Buenos Aires, Argentina. 1, 195-210.
    21. Seiler, K. P. and Lindner, W. (1995). Near-surface and deep groundwater. Journal of Hydrology, 165, 33-44.
    22. Kruseman, G. P. and Ridder N. A. (1994). Analysis and evaluation of pumping test data. 2nd edn, International Institute for Land Reclamation and Improvement, Publication 47, Wageningen, p.378.
    23. Lee, C. H., Chen , W. P and Lee, R. H. (2006). Estimation of Groundwater Recharge Using Water Balance Coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis. Environmental Geology, Vol. 51, No 1, pp. 73-82.
    24. Lee, C. H., Deng, B. W., and Chang, J. L. (1995). A continuum approach for estimating permeability in naturally fractured rocks. Engineering Geology, 39, pp. 71-85.
    25. Lee, C. H. and Farmer, I. W. (1993). Fluid Flow in Discontinuous Rock. Chapman & Hall Publisher, ISBN 0-412-41510-0.
    26. Lee, C. H., Lin, B. S. and Yu, J. L. (1994). Dispersion and Connectivity in Flow through Fractured Networks. Journal of the Chinesr Institute of Engineers, Vol. 17, No. 4.
    27. Lee, C. H., Yu, J. L. and Hwang, H. H. (1993). Fluid Flow and Connectiveity in Fractured Rock. Water Resources Management, Vol. 7, No. 2, pp. 169-184.
    28. Lei, S. (2005). An analytical solution for steady flow into a tunnel. Ground Water, 37(1), 23-26.
    29. Lombardi, G. (2002), Private communication.
    30. Long, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A. (1982). Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3), pp. 645-658.
    31. Louis, C. (1974). Rock Hydraulics, in Rock Mechanics. ed. L. Müller, Springer-Verlag, Wien-New York, 300-387.
    32. Mcdonald M. G. and Harbaugh, A. W. (1988). A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. USGS, U.S.A.
    33. Molinero, J., Samper, J., and Juanes, R. (2002). Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Eng. Geol., 64(4): 369-368.
    34. Muskat, M. and Wyckoff, R. D. (1937). The Flow of Homogeneous Fluid Through Porous Media. McGraw-Hill.
    35. Neuzil, C. E., and Tracy J. V. (1981). Flow Through Fractures. Water Resources Research, 17(1), pp. 191-199.
    36. National Research Council (NRC) (1996). Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. National Academy Press, Washington DC, p.551.
    37. Rat, M. (1973). Ecoulement et repartition des pressions interstitielles autour des tunnels. Bull. Liaison du Laboratoire des Ponts et Chaussees 68, 109-124.
    38. Rutledge, A. T. (1998). Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records—update. U.S. geological survey water-resources investigations report 98-4148, p.43.
    39. Schleiss, A. J. (1988). Design of reinforced concrete-lined pressure tunnels. International Congress of Tunnels and Water, Madrid, Balkema, 2, 1127-1133.
    40. Shirmohammadi, A. and Williams, R. G. (1987). Cover Conditions and Hydrologic Response of a Coastal Plain Soil. ASAE Paper No. 87–2059, American Society of Agricultural Engineers, St. Joseph , Michigan.
    41. Snow, D. T. (1969). Anisotropic permeability of fractured media, Water Resources Research, 5(6), pp. 1273-1289.
    42. Singhal, B. B. S. and Gupta, R. P. (1999). Applied Hydrogeology of Fractured Rocks. Kluwer Academic Publishers.
    43. Theis, C. V. (1935). Relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans. Am. Geoph. Uion Pt. 2, pp. 519-524.
    44. Todd, D. K. (1980). Groundwater Hydrology. John Wiley and Sons, Inc., New York.
    45. Tsang Y. W. and Witherspoon, P. A. (1983). The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size. Journal of Geophysical Research, 88(B3), 2359-2366.
    46. Tseng, D. J., Tsai, B. R., and Chang, L. C. (2001). A Case Study on Ground Treatment for a Rock Tunnel with High Groundwater Ingression in Taiwan. Tunneling and Underground Space Technology, 16, pp. 175-183.
    47. Ward, D. S., Buss, D. R., Mercer, J. W. and Hughes, S. S. (1987). Evaluation of a groundwater corrective action at the Chem-Dyne hazardous waste site using a telescopic mesh refinement modeling approach. Water Resources Research 23(4), 603-617.
    48. Warren, J. E., and Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 3, 245-255.
    49. Yang, F. R., Lee, C. H., Kung, W. J. and Yeh, H. F. (2008). The impact of tunneling construction on the hydrogeological environment of Tseng-Wen Reservoir Transbasin Diversion Project in Taiwan. Engineering Geology, Vol. 103, pp. 39-58. DOI: 10.1016/ j.enggeo.2008.07.12.
    50. Zhang, L. and Franklin, J. A. (1993). Prediction of water flow into rock tunnels: and analytical solution assuming an hydraulic conductivity gradient. International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, 30(1), 37-46.
    51. 丁澈士 (1996),土壤水份收支法應用於地下水補注推估-屏東平原個案研究,第八屆水利工程研討會論文集,台北市, 665-672。
    52. 中華民國隧道協會(2003),新永春隧道巨量湧水處理工程技術論文集。
    53. 中興工程顧問股份有限公司(2000),北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作,交通部台灣國道興建工程局。
    54. 中興工程顧問公司北宜高速公路工程處(2003),北宜高速公路工程雪山隧道地下滲水量再利用評估報告。
    55. 中興工程顧問股份有限公司(2004),補充地質調查試驗及評估報告,曾文水庫越域引水工程計劃-隧道工程委託技術服務,經濟部水利署南區水資源局。
    56. 中興工程顧問股份有限公司(2005),曾文水庫越域引水工程計畫-隧道工程補充地質調查試驗及評估報告,經濟部水利署南區水資源局。
    57. 中興工程顧問公司(2005),曾文水庫越域引水工程計畫-引水隧道水文地質模式檢測與區域水資源環境影響分析-年度報告,經濟部水利署南區水資源局。
    58. 中興工程顧問公司(2006),曾文水庫越域引水工程計畫-引水隧道水文地質模式檢測與區域水資源環境影響分析-年度報告,經濟部水利署南區水資源局。
    59. 中興工程顧問公司(2007),曾文水庫越域引水工程計畫-引水隧道水文地質模式檢測與區域水資源環境影響分析-年度報告,經濟部水利署南區水資源局。
    60. 台灣省政府水利局(1995),崇德水庫工程可行性規劃及相關水源開發規劃-曾文水庫越域引水計畫地表地質調查報告。
    61. 台灣省政府水利局(1995),崇德水庫工程可行性規劃及相關水源開發規劃-曾文水庫越域引水計畫地質探查報告。
    62. 台灣省政府水利局(1997),曾文水庫越域引水可行性規劃-專題報告(八)隧道工程地質探查。
    63. 台灣省政府水利處(1998),曾文水庫越域引水工程規劃(二)-隧道地質補充調查試驗工作總報告。
    64. 交通部台灣區國道新建工程局(2000),北宜高速公路施工階段坪林隧道湧水問題評估調查服務工作-第三期評估調查報告」
    65. 行政院公共工程委員會(2000),台灣地區隧道岩體分類系統暨隧道工程資料庫之建立,第1期,第4冊,工作項目C: 台灣地區特殊地質狀況之調查。
    66. 李振誥、李宏徹、黃崇琅、林碧山(1998),岩體隧道滲流量之預測:以坪林隧道為例,中國土木水利工程學刊,第10卷,第4期,595-604。
    67. 李振誥、陳尉平、李如晃(2002),應用基流資料估計法推估台灣地下水補注量,台灣水利季刊,第50卷,第1期,69-80。
    68. 林宏奕(2002),破裂岩體隧道開挖對滲透係數之影響-以雪山隧道為例,國立成功大學資源工程研究所碩士論文。
    69. 林癸妙(1997),水田迴歸水量之研究,國立中央大學土木工程研究所,碩士論文。
    70. 洪如江(1994),初等工程地質學大綱,財團法人地工技術研究發展基金會,第2版。
    71. 耿慶志(1995),隧道施工湧水評估之半解析方法,地工技術雜誌,第52期,95-102。
    72. 張文城、張龍均(2004),雪山隧道特殊地質施工案例探討,海峽兩岸地工技術岩土工程交流討論會論文集,台北,台灣, 45-58。
    73. 張有天(2005),岩石水力學與工程,中國水利水電出版社。
    74. 許尚逸、黃俊鴻(2000),山岳隧道之瞬時突發性湧水量與持續湧水量評估-以新永春隧道為例,岩盤工程研討會論文集,台中,263-272。
    75. 陳伸賢、曾鈞敏、王鵬瑞(2003),雪山隧道開鑿對翡翠水庫入庫流量影響之探究,第14屆水利工程研討會,交通大學,226-234。
    76. 陳明君(1997),頭城地區四稜砂岩水文地質及隧道湧水之研究,國立台灣大學地質學研究所碩士論文。
    77. 陳昭旭、李振誥,隧道湧水災害之水文地質調查及防治處理措施,地工技術,第87期,81-92頁,2001。
    78. 陳尉平、李振誥、陳進發(1999),由河川資料之流量歷線估計濁水溪流域之地下水補注量,臺灣水利,第47卷,第3期,55-65。
    79. 陳進發、李振誥、陳榮華、陳尉平(1998),未飽和層之水平衡分析,第9屆水利工程研討會,中央大學,G145-G152。
    80. 陳肇夏(1975),台灣溫泉成因與地熱探勘之我見,地質,第1卷第2期,107-117頁。
    81. 曾琮愷(2002),隧道開挖滲流現象之模擬,中原大學土木工程學系碩士論文。
    82. 黃金山、陳伸賢、劉萬里、曾鈞敏、林文勝(2003),山區地下水或可當旱象時替代水源,土木水利,第30卷,第4期,44-49。
    83. 黃俊鴻、許尚逸(2000),隧道施工湧水量之評估,土木工程技術,第4卷,第2期,第89-105頁。
    84. 黃俊鴻(2001),隧道水文地質調查準則,中華民國隧道協會。
    85. 黃俊鴻(2005),雪山隧道工程施工湧水與鄰近地表、地下水文及翡翠水庫進流變異之關聯研究,交通部台灣區國道新建工程局。
    86. 楊豐榮(2006),曾文水庫越域引水隧道工程水文地質研究,第五屆海峽兩岸隧道與地下工程學術與技術研討會,台北,台灣,B4-1 - B4-11。
    87. 楊豐榮、顧承宇、譚志豪、許世孟、鍾明劍,曾文越引隧道工程水文地質之調查與分析評估,地工技術,第112期,第69-80頁,2007。
    88. 經濟部水利署水文水資源管理供應系統網站(http://gweb.wra.gov.tw/wrweb/)。
    89. 經濟部水利署南區水資源局(2004),曾文水庫越域引水工程計畫-隧道工程(五)-統包先期作業階段地質調查及試驗紀實報告。
    90. 蔣序元(2002),新永春隧道之湧水量分析,國立台灣大學土木工程研究所碩士論文。
    91. 蔣爵光(1991),隧道工程地質,中國鐵道出版社。
    92. 龔文瑞(2005),曾文水庫越域引水隧道湧水之研究,國立成功大學資源工程研究所碩士論文。

    下載圖示 校內:立即公開
    校外:2009-01-20公開
    QR CODE