簡易檢索 / 詳目顯示

研究生: 馬聖凱
Ma, Sheng-Kai
論文名稱: 研究A型流感NS1突變株做為流感減毒疫苗候選株
Study of an influenza A virus with NS1 mutations as a live attenuated vaccine candidate
指導教授: 凌斌
Ling, Pin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 41
中文關鍵詞: A型流行性感冒病毒非結構蛋白1活性減毒流感疫苗第一型干擾素第三型干擾素
外文關鍵詞: Influenza A virus, Non-structural protein 1, live attenuated influenza vaccine, type I interferon, type 3 interferon
相關次數: 點閱:29下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A型流感病毒(IAV)會透過飛沫傳染在人類社會中引起嚴重呼吸道感染流行病,季節性的流感每年造成5~15%的人口感染,以及500000人口的死亡,造成極大的危害。由於A型流感有很高的基因突變與抗原轉移的特性,導致目前傳統的滅活病毒疫苗無法廣效並持久進行保護,所以設計一款能夠廣效並持久進行保護的疫苗成為一大挑戰。目前市面上有兩種疫苗設計方式來解決這個挑戰,其一是針對A型流感高度保守的抗原設計的廣效性疫苗,其二就是活性減毒流感疫苗。相比於滅活疫苗,活性減毒流感疫苗除了能活化IgG外,同時能夠活化IgA以及刺激更好的T細胞適應性免疫。目前活性減毒疫苗設計朝向能夠刺激更高的干擾素(IFN)活化進行,因為干擾素以被證實可以更強的活化適應性免疫。我們實驗室最近研究發現一個IAV新的免疫逃脫機制,主要透過流感的非結構蛋白(NS1)攔截三個宿主偵測流感RNA的sensor(RIG-I, TLR3和TLR7) 活化TRAF3到第一型干擾素的路徑,進而降低第一型干擾素的產生。我們實驗室對NS1結合TRAF3的位點進行突變後,產生了能夠活化更高IFN的減毒病毒株(PR/8 NS1 E152A/E153A)。因為此病毒株在動物實驗中顯示有減毒及誘發高干擾素特性,所以我們推估PR/8 NS1 E152A/E153A病毒株有作為疫苗候選株的潛力,於是我們設計動物疫苗實驗來測試PR/8 NS1 E152A/E153A的保護效果。實驗結果顯示,鼻腔施打的PR/8 NS1 E152A/E153A疫苗在疫苗接種階段小鼠體重沒有顯著變化,顯示作為疫苗的安全性,且在後續對同源病毒(PR/8)感染有完整的保護力。這之後我們也測試了PR/8 NS1 E152A/E153A疫苗對兩種不同的異源病毒的保護力,這兩種異源病毒分別是H1N1 WSN毒株與抗原相差更遠的H3N2 X31毒株。結果顯示PR/8 NS1 E152A/E153A疫苗對H1N1 WSN毒株有完整保護力,對H3N2 X31則是有部分保護力。因為我們先前已在小鼠的體內與體外試驗中觀察到PR/8 NS1 E152A/E153A活化高干擾素的特性,但IAV的主要宿主是人類肺臟上皮細胞,所以我們要測試這個PR/8 NS1 E152A/E153A病毒株是否在肺臟上皮細胞(A549)中活化更高干擾素,結果顯示,PR/8 NS1 E152A/E153A感染的A549,比PR/8 WT感染的A549有更高的IFN-β和IFN-λ表達,在病毒NS1中,則是PR/8 WT多於PR/8 NS1 E152A/E153A。我們也嘗試著以TRAF3-相互作用基序(TRAF3-interaction motif)作為基礎,做更多的NS1突變,看是否能做出可以活化更高干擾素的NS1突變。利用報告基因測試來檢測新的NS1突變株是否有更好的干擾素活化效果,結果顯示新設計的NS1突變蛋白量表達不好,所以目前還沒辦法下定論。根據這篇論文的實驗結果,我們觀察到PR/8 NS1 E152A/E153A賦予小鼠免疫力抵抗同源或異源病毒的感染。同時在人類肺臟上皮細胞(A549)中觀察到有更高的第一型和第三型干擾素活化。未來我們會著重PR/8 NS1 E152A/E153A病毒株誘發小鼠適應性免疫的IgA與T細胞分析,以及受PR/8 NS1 E152A/E153A病毒株感染後的小鼠適應性免疫相關RNA大規模並行測序(NGS),確認其作為疫苗候選株的可能性。

    Influenza A virus (IAV) is a major pathogen causing respiratory tract diseases in humans yearly and represents a severe threat to global health. Due to the characteristics of high gene mutation, the current traditional inactivated influenza vaccines cannot provide broad and lasting protection. Therefore, designing a vaccine that can provide broad and lasting protection has become a significant challenge. The development of a live attenuated influenza vaccine is one of the feasible options because live attenuated influenza vaccine can activate IgA, in addition to IgG activation, and stimulate better T cell immunity. The current design of live attenuated vaccines aims to produce higher interferon (IFN) activation, as interferons are critical for activating innate and adaptive immunity. Our lab has uncovered a novel NS1-mediated immune evasion by which NS1 employs a conserved TRAF3-interacting motif (TIM) (a.a. 150-153; FTEE) to target TRAF3 and interrupt three RNA sensing pathways to the TRAF3-type I IFN axis. A recombinant mutant virus with NS1 E152A/E153A mutations exhibits attenuated pathogenicity in mice. We performed vaccination experiments to examine whether PR8 NS1 E152/153A could be a vaccine candidate. The experimental results showed that the PR8 NS1 E152/153A had a protective effect on lethal dose infection of both homologous and heterologous viruses.
    Further, Elisa and real-time PCR were performed to confirm whether PR8 NS1 E152/153A also could activate higher IFN in human lung epithelial cells (A549). The results showed that NS1 E152A/E153A induced higher IFN-β expression than PR8 WT in A549 cells. In addition, NS1 E152A/E153A also induced more IFN-λexpression in A549 cells. Additionally, our ongoing work is to design more NS1 TIM mutations to test their effects on IFN induction. Together, the current study confirms the potential of PR8 NS1 E152/153A as a vaccine candidate.

    目錄 摘要 I 英文延伸摘要 III 誌謝 VII 1. 緒論 1 1.1 A型流感病毒 1 1.2 第一型干擾素及第三型干擾素 1 1.3 A型流感疫苗 2 1.4 NS1位點突變病毒株 4 2. MATERIALS AND METHODS 6 2.1 實驗病毒來源 6 2.2 MADIN-DARBY 犬腎細胞(MDCK)培養 7 2.3 病毒稀釋液配方: 7 2.4 實驗細胞培養 7 2.5 A型流感病毒感染A549方法 8 2.6 A549感染的酶聯免疫吸附測定(ENZYME-LINKED IMMUNOSORBENT ASSAY, ELISA) 8 2.7 A549感染的即時聚合酶連鎖反應(REAL-TIME PCR, QPCR) 9 2.8 A549感染的西方墨點法(WESTERN BLOT)蛋白質試驗 10 2.9 實驗用質體製備 11 2.10 HEK293細胞冷光素酶檢測法(LUCIFERASE REPORTER ASSAY) 12 3. 結果 13 3.1 PR/8 NS1 E152A/E153A突變株做為疫苗施打小鼠能夠抵抗同源野生型病毒(IAV PR/8)感染 13 3.2 PR/8 NS1 E152A/E153A病毒做為疫苗刺激小鼠產生免疫力抵抗異源病毒(H1N1 WSN)野生型的感染 14 3.3 IAV NS1 E152A/E153A病毒做為疫苗為小鼠提供對抗原差異更大的異源病毒(IAV H3N2 X31)感染的部分保護力 14 3.4 PR/8 NS1 E152A/E153A病毒在人類肺臟上皮細胞(A549)中有更高的干擾素刺激能力。15 3.5 PR/8 NS1 E152A/E153A病毒在人類肺臟上皮細胞(A549)中有更高的干擾素-Λ刺激能力 17 3.6 設計可能有更強的第一型干擾素刺激效果的NS1變異基因 17 4. 討論 19 5. REFERENCES 22 6. FIGURES AND FIGURE LEGENDS 26 7. APPENDIXES 38

    1. Wahlgren, J. (2011) Influenza A viruses: an ecology review. Infection ecology & epidemiology 1, 6004
    2. Paules, C. I., and Subbarao, K. (2018) Influenza vaccination and prevention of cardiovascular disease mortality–Authors' reply. The Lancet 391, 427-428
    3. Ayllon, J., and García-Sastre, A. (2014) The NS1 protein: a multitasking virulence factor. Influenza Pathogenesis and Control-Volume II, 73-107
    4. Klemm, C., Boergeling, Y., Ludwig, S., and Ehrhardt, C. (2018) Immunomodulatory nonstructural proteins of influenza A viruses. Trends in microbiology 26, 624-636
    5. Krug, R. M. (2015) Functions of the influenza A virus NS1 protein in antiviral defense. Current opinion in virology 12, 1-6
    6. Taubenberger, J. K., and Morens, D. M. (2008) The pathology of influenza virus infections. Annual review of pathology 3, 499
    7. Krammer, F., and Palese, P. (2015) Advances in the development of influenza virus vaccines. Nature reviews Drug discovery 14, 167-182
    8. Mostafa, A., Abdelwhab, E. M., Mettenleiter, T. C., and Pleschka, S. (2018) Zoonotic potential of influenza A viruses: a comprehensive overview. Viruses 10, 497
    9. Sadler, A. J., and Williams, B. R. (2008) Interferon-inducible antiviral effectors. Nature reviews immunology 8, 559-568
    10. Goubau, D., Deddouche, S., and e Sousa, C. R. (2013) Cytosolic sensing of viruses. Immunity 38, 855-869
    11. Wu, X., Wang, J., Wang, S., Wu, F., Chen, Z., Li, C., Cheng, G., and Qin, F. X.-F. (2019) Inhibition of influenza A virus replication by TRIM14 via its multifaceted protein–protein interaction with NP. Frontiers in Microbiology 10, 344
    12. Chen, Y.-L., Chang, S., Chen, T.-T., and Lee, C.-K. (2015) Efficient generation of plasmacytoid dendritic cell from common lymphoid progenitors by Flt3 ligand. PLoS One 10, e0135217
    13. Crouse, J., Kalinke, U., and Oxenius, A. (2015) Regulation of antiviral T cell responses by type I interferons. Nature Reviews Immunology 15, 231-242
    14. McNab, F., Mayer-Barber, K., Sher, A., Wack, A., and O'garra, A. (2015) Type I interferons in infectious disease. Nature Reviews Immunology 15, 87-103
    15. Borden, E. C., Sen, G. C., Uze, G., Silverman, R. H., Ransohoff, R. M., Foster, G. R., and Stark, G. R. (2007) Interferons at age 50: past, current and future impact on biomedicine. Nature reviews Drug discovery 6, 975-990
    16. Lazear, H. M., Schoggins, J. W., and Diamond, M. S. (2019) Shared and distinct functions of type I and type III interferons. Immunity 50, 907-923
    17. Andreakos, E., Salagianni, M., Galani, I. E., and Koltsida, O. (2017) Interferon-λs: front-line guardians of immunity and homeostasis in the respiratory tract. Frontiers in immunology 8, 1232
    18. Klinkhammer, J., Schnepf, D., Ye, L., Schwaderlapp, M., Gad, H. H., Hartmann, R., Garcin, D., Mahlakõiv, T., and Staeheli, P. (2018) IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. elife 7, e33354
    19. Hemann, E. A., Green, R., Turnbull, J. B., Langlois, R. A., Savan, R., and Gale, M. (2019) Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nature immunology 20, 1035-1045
    20. Petrova, V. N., and Russell, C. A. (2018) The evolution of seasonal influenza viruses. Nature Reviews Microbiology 16, 47-60
    21. Allie, S. R., Bradley, J. E., Mudunuru, U., Schultz, M. D., Graf, B. A., Lund, F. E., and Randall, T. D. (2019) The establishment of resident memory B cells in the lung requires local antigen encounter. Nature immunology 20, 97-108
    22. Oh, J. E., Song, E., Moriyama, M., Wong, P., Zhang, S., Jiang, R., Strohmeier, S., Kleinstein, S. H., Krammer, F., and Iwasaki, A. (2021) Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Science immunology 6, eabj5129
    23. Wang, Z., Kedzierski, L., Nuessing, S., Chua, B. Y. L., Quiñones-Parra, S. M., Huber, V. C., Jackson, D. C., Thomas, P. G., and Kedzierska, K. (2016) Establishment of memory CD8+ T cells with live attenuated influenza virus across different vaccination doses. Journal of General Virology 97, 3205-3214
    24. Zens, K. D., Chen, J. K., and Farber, D. L. (2016) Vaccine-generated lung tissue–resident memory T cells provide heterosubtypic protection to influenza infection. Jci Insight 1
    25. Coelingh, K., Olajide, I. R., MacDonald, P., and Yogev, R. (2015) Efficacy and effectiveness of live attenuated influenza vaccine in school-age children. Expert review of vaccines 14, 1331-1346
    26. Chen, A., Poh, S. L., Dietzsch, C., Roethl, E., Yan, M. L., and Ng, S. K. (2011) Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. BMC biotechnology 11, 1-16
    27. Richt, J. A., and García-Sastre, A. (2009) Attenuated influenza virus vaccines with modified NS1 proteins. Vaccines for pandemic influenza, 177-195
    28. Du, Y., Xin, L., Shi, Y., Zhang, T.-H., Wu, N. C., Dai, L., Gong, D., Brar, G., Shu, S., and Luo, J. (2018) Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science 359, 290-296
    29. Jureka, A. S., Kleinpeter, A. B., Cornilescu, G., Cornilescu, C. C., and Petit, C. M. (2015) Structural basis for a novel interaction between the NS1 protein derived from the 1918 influenza virus and RIG-I. Structure 23, 2001-2010
    30. Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F., and Reis e Sousa, C. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001
    31. Chen, G., Liu, C.-H., Zhou, L., and Krug, R. M. (2014) Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein. Cell host & microbe 15, 484-493
    32. Chen, G., Ma, L.-C., Wang, S., Woltz, R. L., Grasso, E. M., Montelione, G. T., and Krug, R. M. (2020) A double-stranded RNA platform is required for the interaction between a host restriction factor and the NS1 protein of influenza A virus. Nucleic acids research 48, 304-315
    33. Gack, M. U., Albrecht, R. A., Urano, T., Inn, K.-S., Huang, I.-C., Carnero, E., Farzan, M., Inoue, S., Jung, J. U., and García-Sastre, A. (2009) Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell host & microbe 5, 439-449
    34. Lin, C.-Y., Shih, M.-C., Chang, H.-C., Lin, K.-J., Chen, L.-F., Huang, S.-W., Yang, M.-L., Ma, S.-K., Shiau, A.-L., and Wang, J.-R. (2021) Influenza a virus NS1 resembles a TRAF3-interacting motif to target the RNA sensing-TRAF3-type I IFN axis and impair antiviral innate immunity. J Biomed Sci 28, 1-17
    35. Ank, N., West, H., Bartholdy, C., Eriksson, K., Thomsen, A. R., and Paludan, S. R. (2006) Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. Journal of virology 80, 4501-4509
    36. Arora, S., Lim, W., Bist, P., Perumalsamy, R., Lukman, H., Li, F., Welker, L., Yan, B., Sethi, G., and Tambyah, P. (2016) Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death & Differentiation 23, 1243-1256
    37. Pizzolla, A., and Wakim, L. M. (2019) Memory T cell dynamics in the lung during influenza virus infection. The Journal of Immunology 202, 374-381
    38. M.-C. Shih, Study of innate immune regulation during influenza A virus infection. National Cheng Kung University, Taiwan (2018).
    39. K.-R. Chen, Biochemical and functional study of antiviral innate immunity against RNA virus infection. National Cheng Kung University, Taiwan (2018).
    40. J.-Y. Lin, The interaction between the host innate immune system and influenza A virus. National Cheng Kung University, Taiwan (2018).

    下載圖示 校內:2025-09-30公開
    校外:2025-09-30公開
    QR CODE