簡易檢索 / 詳目顯示

研究生: 朱綱羽
Chu, Kang-Yu
論文名稱: 發展二維掃描擴散光學影像系統應用於連續波近紅外光譜學
Development of Two Dimension Scanning System and Diffuse Optical Imaging for Continuous Wave Near-infrared Spectroscopy
指導教授: 陳家進
Chen, Jia-Jin Jason
共同指導教授: 曾盛豪
Tseng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 48
中文關鍵詞: 缺血性中風近紅外光譜儀振鏡掃描
外文關鍵詞: stroke, infarction, near infrared spectroscopy, diffuse optical imaging, hemodynamic
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中風是一種由疾病或是腦血流阻斷等因素引起的異質性症狀,而其缺血區域往往伴隨者水腫的現象進而改變腦組織的光學特性。各種型式的近紅外光譜學也開發出具備良好時間解析能力的系統用以量化血氧程度以及評估腦組織在缺血性中風不同時期的演化、傷害。在本研究中,我們基於高速振鏡開發了一套單對光源偵測器的二維掃描近紅外光譜系統而非增加更多頻道。透過圖像化使用者介面,可以精確的控制掃描光源的位置,同時進行量測資料擷取。連續波近紅外光譜儀模組已被運用於監控缺血性中風大鼠腦部血氧蛋白濃度的相對值變化。我們將其光源與高速振鏡定位模組結合架設出空間解析能力約為100μm,並可快速掃描大小約10x10 mm^2的區域。此二維近紅外光譜系統先以埋在光學仿體中低反射特性的條碼作測試及校正,接續以頸動脈結紮大鼠實驗來考察組織功能性變化。最後觀測壓迫人類手臂血管的變化實驗則用以演示系統能力。我們呈現了人類血管壓迫及大鼠頸動脈結紮實驗中血液動力的時空變化的量測結果。藉由此設計,我們可以利用二維近紅外光譜掃描量測以重建腦半球的血液動力和光學特性的影像。期盼此連續波近紅外光譜系統可應用於腦血管相關疾病之功能性及結構性的影像資訊。監測腦皮質血液動力時變反應的動物模型也能夠在未來提供作為中風恢復、治療手段等相關議題上作為參考。

    Stroke is a heterogeneous syndrome caused by various diseases resulting from disruption of cerebral blood flow (CBF) and brain tissue necrosis. The infarct area of ischemic stroke generally accompanies with cerebral edema which could change the optical properties of the brain tissue. Various forms of near infrared spectroscopy (NIRS) have been developed to provide a good temporal resolution for quantifying blood oxygen level and for assessing damages and evolution of brain tissue during various stages of ischemic stroke. In this study, we have developed a two-dimensional NIRS scanning system based on galvo mirror scanner of one light source and one detector instead of including more channels. Continuous wave NIRS (CWNIRS) module for monitoring the relative change of hemoglobin concentrations is utilized in the ischemic stroke rat. The continuous NIRS light source was positioned precisely and was were acquired by using graphic user interface (GUI). The CWNIRS light source is mounted on 2D fast positioning module to scan an area of 100 mm^2 at a resolution of 100μm. The 2D NIRS scanning system is first observed in phantom, buried barcode with lower reflection properties for calibration purpose, and later in common carotid artery (CCA) ligation rat experiment for inspecting tissue and functional variation. Also, the scanning was applied to observe occlusion of human limb vessels. Our results show the spatiotemporal brain mapping of NIRS during hemodynamic measurements in human limb occlusion as well as in ligation of rats experiment. With this design, we can reconstruct a hemispheric brain image of the hemodynamics and the optical properties from the 2-D scanning of NIRS measurements. It is expected that CW-NIRS image system can provide functional and anatomical information of the brain with cerebral vascular disease. The cortical hemodynamic response in animal model would provide time-course monitoring for stroke recovery as well as for future design of therapeutic treatment schemes for stroke subjects in the future.

    摘要 I Abstract II 誌謝 IV List of Figures VIII List of Table XI Chapter 1 Introduction 1 1.1 Introduction to stroke 1 1.1.2 Spreading depolarization 2 1.1.3 Stroke diagnostic techniques 3 1.2 Near infrared spectroscopy 4 1.2.1 Modified Beer-Lambert’s Law 5 1.2.2 NIRS measurement system 7 1.3 Motivation and the aims of the study 8 Chapter 2 Materials and Methods 9 2.1 Near infrared spectroscopy systems 9 2.1.1 Continuous wave near-infrared spectroscopy system 9 2.1.2 Galvo scanner device 10 2.1.3 Graphic user interface of scan system control and measurement 11 2.1.4 Frequency domain near-infrared spectroscopy 14 2.2 Optical phantoms 16 2.3 Scanning System Hardware Settings 17 2.3.1 Symmetric Probe Setting 17 2.3.2 Single Probe Setting and CWNIRS coupling 18 2.4 Animal Experiment 19 2.4.1 Animal Preparation and Grouping 19 2.4.2 Common Carotid Artery Ligation Operation 19 2.4.3 Animal Brain Functional Measurement 21 2.5 Human Arm Blood Regulation Test 22 Chapter 3 Result 24 3.1 Scanning System Validation Test 24 3.1.1 Scanning Range and Location 24 3.1.2 Scanning Speed Test 27 3.2 Stability of Laser Diode Intensity 28 3.3 Reconstruction of Barcode Image 31 3.3.1 One Dimension Scanning 31 3.3.2 Two Dimension Deep Pattern Scanning 32 3.4 2D Scanning of CCA Ligation Rats 36 3.5 Human Arm Occlusion Scanning Imaging 39 Chapter 4 Discussion and Conclusion 43 References 46

    Broderick, P. A., & Kolodny, E. H. (2011). Biosensors for brain trauma and dual laser doppler flowmetry: enoxaparin simultaneously reduces stroke-induced dopamine and blood flow while enhancing serotonin and blood flow in motor neurons of brain, in vivo. Sensors (Basel), 11(1), 138-161.
    Cerussi, A. E., Berger, A. J., Bevilacqua, F., Shah, N., Jakubowski, D., Butler, J., . . . Tromberg, B. J. (2001). Sources of Absorption and Scattering Contrast for Near-Infrared Optical Mammography. Academic Radiology, 8(3), 211-218.
    Dreier, J. P. (2011). The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med, 17(4), 439-447.
    Frackowiak, R. S., Lenzi, G. L., Jones, T., & Heather, J. D. (1980). Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography. Journal of computer assisted tomography, 4(6), 727-736.
    Hielscher, A., Bluestone, A., Abdoulaev, G., Klose, A., Lasker, J., Stewart, M., . . . Beuthan, J. (2002). Near-infrared diffuse optical tomography. Disease markers, 18(5-6), 313-337.
    Hillman, E. M. (2007). Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt, 12(5), 051402.
    Jobsis, F. F. (1977). Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198(4323), 1264-1267.
    Kawauchi, S., Nishidate, I., Nawashiro, H., & Sato, S. (2014). Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model. SPIE BiOS.
    Kocsis, L., Herman, P., & Eke, A. (2006). The modified Beer-Lambert law revisited. Phys Med Biol, 51(5), N91-98.
    Kohl, M., Lindauer, U., Dirnagl, U., & Villringer, A. (1998). Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats. Optics letters, 23(7), 555-557.
    Lin, Y.-C., Tseng, S.-H., Chung, P.-C., Yang, C.-F., Wu, M.-H., Nioka, S., & Wong, Y.-K. (2013). Non-invasive tumor detection using NIR light. Paper presented at the Biomedical Circuits and Systems Conference (BioCAS), 2013 IEEE.
    Nishimura, E., Stautzenberger, J. P., Robinson, W., Downs, T. H.,, & Downs, J. H. (2007). A New Approach to Functional Near-Infrared Technology. IEEE, 26(4), 25-29.
    Nissilä, I., Noponen, T., Heino, J., Kajava, T., & Katila, T. (2005). Diffuse Optical Imaging. Advances in electromagnetic fields in living systems: Springer US.
    Prince, S., Malarvizhi, S., SreeHarsha, K. A., Bhandari, A., & Dua, A. (2008). An automated system for optical imaging to characterize tissue based on diffuse reflectance spectroscopy. Paper presented at the Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on.
    Ramos-Cabrer, P., Campos, F., Sobrino, T., & Castillo, J. (2011). Targeting the ischemic penumbra. Stroke, 42(1 Suppl), S7-11.
    Rolfe, P. (2000). In vivo near-infrared spectroscopy. Biomedical Engineering. Annual review of biomedical engineering, 2(1), 715-754.
    Sacco, R. L., Wolf, P. A., & Gorelick, P. B. (1998). Risk factors and their management for stroke prevention: outlook for 1999 and beyond. Neurology, 53(7 Suppl 4), S15-24.
    Sassaroli, A., & Fantini, S. (2004). Comment on the modified Beer–Lambert law for scattering media. Physics in Medicine and Biology, 49(14), N255-N257.
    Strangman, G., Boas, D. A., & Sutton, J. P. (2002). Non-invasive neuroimaging using near-infrared lightNon-invasive neuroimaging using near-infrared lightNon-invasive neuroimaging using near-infrared light. Biological psychiatry, 52(7), 679-693.
    Strong, A. J., Anderson, P. J., Watts, H. R., Virley, D. J., Lloyd, A., Irving, E. A., . . . Graf, R. (2007). Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain, 130(Pt 4), 995-1008.
    Tonnesen, J., Pryds, A., Larsen, E. H., Paulson, O. B., Hauerberg, J., & Knudsen, G. M. (2005). Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp Physiol, 90(3), 349-355.
    Xiong, Y., Zhu, W. Z., Zhang, Q., & Wang, W. (2014). Observation of post-MCAO cortical inflammatory edema in rats by 7.0 Tesla MRI. J Huazhong Univ Sci Technolog Med Sci, 34(1), 120-124.
    Yang, F. M. (2011). 發展近紅外光譜系統應用於評估大鼠腦部血氧反應. National Cheng Kung University, 2011.
    Yang, Y., & Rosenberg, G. A. (2011). Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke, 42(11), 3323-3328.
    Yonghong, Z., Jing, B., Nanguang, C., & Dengfeng, L. (2000). A NIR optical imaging system with diffuse photons. Paper presented at the Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE.
    Zhao, J., Ding, H. S., Hou, X. L., Zhou, C. L., & Chance, B. (2005). In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy. J Biomed Opt, 10(2), 024028.

    下載圖示 校內:2017-02-15公開
    校外:2018-02-15公開
    QR CODE