簡易檢索 / 詳目顯示

研究生: 余筱萱
Yu, Hsiao-Hsuan
論文名稱: 應用於量子位元控制之超低溫CMOS混頻器與驅動電路整合設計
Integration Design of Cryo-CMOS Mixer and Driver for Qubits Control Applications
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 量子位元控制電路極低溫射頻電路混頻器驅動電路
外文關鍵詞: Qubit, Control circuit, Cryogenic temperature, RF circuit, Mixer, Driver
相關次數: 點閱:210下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為設計應用於操控矽量子位元所需低溫高精準度射頻電路。其中包括17.5 GHz升頻混頻器及輸出驅動電路。混頻器以Gilbert Cell基本架構下,使用電流再利用注入式架構,加入PMOS降低開關級電流同時,亦為放大訊號之角色。為維持整體電路線性度與提升增益,混頻器後級接上輸出驅動電路,以簡單的共源極放大器作為基本架構,並採用多閘級電晶體線性之技術。使用Constant-Current作為偏壓電路,透過電流鏡複製電流,製造的偏壓點會隨不同製程、電壓、溫度自動調整,以維持主電路的特性。整體電路使用TSMC 40 nm CMOS製程設計實現。
    整合電路先採用On-wafer量測方式,量測結果與佈局模擬結果大致相同。電源供應電壓VDD為1.2V下,整體消耗功率為13.8 mW、整體晶片面積為1.176 mm2。量測結果輸出之射頻端S_22於訊號頻率17.5 GHz下有-16.2 dB的輸出反射損耗。設定輸入訊號PLO為-2 dBm、PIF為-20 dBm條件下,此時轉換增益為3.37 dB、IP1dB約為-8 dBm、IIP3為-0.89 dBm、雜訊指數為12.97 dB,SFDR為34.29 dB。接著為符合低溫量測環境再透過On-PCB量測,需使用印刷電路板以SMA接頭與低溫量測環境相接。低溫(4 K)量測環境下,輸入訊號PLO為-11 dBm、PIF為-40 dBm,晶片於低溫下之轉換增益為-7.64 dB,輸出功率為-47.63 dBm,此結果包含設計之晶片至外接放大器之間經過Balun及接線之損耗。此時扣除LO leakage外,SFDR為34.46 dB由二階失真17 GHz主導。電源供應電壓為1.2V下,整體消耗功率為20.016 mW。

    This thesis presents a high linearity CMOS radio-frequency (RF) integrated circuit operated at cryogenic temperature for spin qubits control system. The circuit comprises a 17.5 GHz up-conversion mixer and an output dirver. The current-reused bleeding mixer is based on the Gilbert cell topology, using the transconductor with active load to reduce the bias current through the switch stage. Besides, the PMOS transistor is used as a part of transconductance stage to amplify the input IF signal. In order to maintain the linearity of the whole circuit and achieve moderate conversion gain, integration of the mixer and output driver is proposed. The driver circuit adopts a simple common-source amplifier with multiple gated transistor linearization technique. The constant-current biased circuit can provide the core circuit stable performance over process, voltage, temperature variations via current-mirroring. The whole circuit is implemented in TSMC 40 nm CMOS technology.
    Firstly, the on-wafer probing measurement is adopted for the chip, with the results highly close to that of the post-simulation. The chip consumes 13.8 mW from a 1.2 V supply voltage and total chip size including pads is 1.176 mm2. At the 17.5 GHz operation frequency, with the LO power of -2 dBm and the IF power of -20 dBm, the measured S22 is -16.2 dB, the conversion gain is 3.37 dB, the IP1dB is -8 dBm, the IIP¬3 is -0.89 dBm, the noise figure is 12.97 dB and the SFDR is 34.29 dB. So as to meet the low temperature measurement environment, on-PCB measurement with SMA connector is required. With the LO power of -11 dBm and the IF power of -40 dBm, the designed chip achieves a conversion gain of -7.64 dB and an output power of -47.63 dBm when operating at 4 K. Excluding the LO leakage, the SFDR is 34.46 dB, which dominated by second-order distortion tone, 17 GHz. . The whole circuit consumes 20.016 mW from a 1.2 V power supply.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 量子電腦與低溫電子電路之應用 2 1.2.2 高線性度射頻電路架構分析 3 1.3 章節概述 6 第二章 應用於量子電腦之低溫電路探討 7 2.1 量子電腦與量子位元簡介 7 2.2 應用於量子電腦中之基本電路區塊與操作 8 2.2.1 應用於量子位元控制電路 8 2.2.2 電路區塊之規格訂定 10 2.3 低溫下主動元件與被動元件之特性與回顧 11 2.3.1 低溫下CMOS之特性變異 11 2.3.2 低溫下被動元件之特性變異 14 第三章 17.5 GHz升頻混頻器與輸出驅動電路設計 15 3.1 混頻器之基本原理 15 3.2 混頻器之重要參數 15 3.2.1 轉換增益 16 3.2.2 線性度 16 3.2.3 隔離度 20 3.2.4 雜訊指數 21 3.3 混頻器之基本架構 23 3.3.1 平方律混頻器 23 3.3.2 被動式混頻器 24 3.3.3 主動式單平衡混頻器 24 3.3.4 主動式雙平衡混頻器 25 3.4 升頻混頻器電路設計 27 3.4.1 線性度分析 27 3.4.2 升頻混頻器電路設計與實作 31 3.4.3 升頻混頻器電路模擬結果 36 3.5 輸出驅動電路 38 3.5.1 驅動電路設計與實作 38 3.5.2 驅動電路模擬結果 40 3.5.3 偏壓電路設計與實作 42 3.5.4 偏壓電路模擬結果 43 3.6 17.5 GHz升頻混頻器與輸出驅動電路之整合 43 3.6.1 整合電路模擬結果 43 第四章 室溫與低溫量測結果與討論 46 4.1 整合電路於室溫之量測 46 4.1.1 On-wafer量測環境設置 46 4.1.2 On-wafer量測結果與討論 48 4.1.3 On-PCB量測結果與討論 54 4.2 整合電路於低溫之量測 58 4.2.1 4 K低溫系統環境設置 58 4.2.2 4 K低溫系統量測結果與討論 60 第五章 結論及未來展望 66 5.1 結論 66 5.2 未來展望 68 參考文獻 70

    [1] TechNews科技新報,淺談量子計算硬體:量子位元技術的演進與挑戰Available: https://technews.tw/2021/11/30/evolution-and-challenges-of-qubit/
    [2] Research Portal,量子電腦為何比傳統電腦強大?量子運算的發展又有哪些挑戰呢?Available: https://pansci.asia/archives/140036
    [3] IBM, Available: https://research.ibm.com/quantum-computing
    [4] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” in Nature, vol. 574, no. 7779, pp. 505–510, 2019.
    [5] L. M. K. Vandersypen et al., “Interfacing spin qubits in quantum dots and donors—Hot, dense, and coherent,”in NPJ Quantum Inf., vol. 3, no. 1, p. 34, 2017.
    [6] B. Patra et al., “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 309–321, Jan. 2018.
    [7] H. Homulle, F. Sebastiano, and E. Charbon, “Deep-cryogenic voltage references in 40-nm CMOS,” in IEEE Solid-State Circuits Lett., vol. 1, no. 5, pp. 110–113, May 2018.
    [8] J. P. G. Van Dijk et al., "A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons," IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2930-2946, Nov. 2020.
    [9] R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures,” in IEEE Journal of the Electron Devices Society, vol. 6, pp. 996–1006, 2018.
    [10] M. Mehrpoo et al., "Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers," in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5.
    [11] A. Çağlar and M. B. Yelten, "Design of Cryogenic LNAs for High Linearity in Space Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 12, pp. 4619-4627, Dec. 2019.
    [12] A. Mirzaei, H. Darabi, J. C. Leete, X. Chen, K. Juan and A. Yazdi, "Analysis and Optimization of Current-Driven Passive Mixers in Narrowband Direct-Conversion Receivers," IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2678-2688, Oct. 2009.
    [13] A. N. Karanicolas, "A 2.7-V 900-MHz CMOS LNA and mixer," IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp. 1939-1944, Dec. 1996.
    [14] V. Vidojkovic, J. van der Tang, A. Leeuwenburgh and A. H. M. van Roermund, "A low-voltage folded-switching mixer in 0.18-/spl mu/m CMOS," IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1259-1264, June 2005.
    [15] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk and B. Nauta, "A CMOS switched transconductor mixer," IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1231-1240, Aug. 2004.
    [16] H. Darabi and J. Chiu, "A noise cancellation technique in active RF-CMOS mixers," ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005, pp. 544-616 Vol. 1.
    [17] Beom Kyu Ko and Kwyro Lee, "A comparative study on the various monolithic low noise amplifier circuit topologies for RF and microwave applications," IEEE Journal of Solid-State Circuits, vol. 31, no. 8, pp. 1220-1225, Aug. 1996.
    [18] Tae Wook Kim, Bonkee Kim and Kwyro Lee, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 223-229, Jan. 2004.
    [19] B. Patra et al., "19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 304-306.
    [20] J. P. G. van Dijk et al., “Impact of classical control electronics on qubit fidelity,” Phys. Rev. A, Gen. Phys., vol. 12, no. 4, Oct. 2019, Art. no. 044054.
    [21] F. Balestra and G. Ghibaudo, “Brief review of the MOS device physics for low temperature electronics,” Solid-State Electronics, vol. 37, no. 12, pp. 1967 – 1975, 1994.
    [22] A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018.
    [23] Y. -S. Won, C. -H. Kim and S. -G. Lee, "A 24 GHz Highly Linear Up-Conversion Mixer in CMOS 0.13 μm Technology," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 6, pp. 400-402, June 2015.
    [24] I. Lai and M. Fujishima, “An integrated 20–26 GHz CMOS up-conversion mixer with low power consumption,” in Proc. 32nd Eur. SolidState Circuits Conf., 2006, pp. 400–403.
    [25] B. Razavi, RF Microelectronics, second edition, Prentice Hall, Inc., 2012
    [26] B. Patra, M. Mehrpoo, A. Ruffino, F. Sebastiano, E. Charbon and M. Babaie, "Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 448-456, 2020.
    [27] 林育中,量子位元的種類-兼論量子政策
    Available: https://www.digitimes.com.tw/col/article.asp?id=1097
    [28] 李聯寧,量子霸權(Quantum Supermacy)世界大戰開打:量子電腦真的來了, 2020.
    [29] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
    [30] P. R. Kinget and M. S. J. Steyaert, "A 1-GHz CMOS up-conversion mixer," IEEE Journal of Solid-State Circuits, vol. 32, no. 3, pp. 370-376, March 1997.
    [31] Z. Tang et al., "Cryogenic CMOS RF Device Modeling for Scalable Quantum Computer Design," in IEEE Journal of the Electron Devices Society, vol. 10, pp. 532-539, 2022.
    [32] J. Park, C. -H. Lee, B. -S. Kim and J. Laskar, "Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
    [33] M. T. Terrovitis and R. G. Meyer, "Noise in current-commutating CMOS mixers," IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 772-783, June 1999.
    [34] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
    [35] E. Abou-Allam, J. J. Nisbet and M. C. Maliepaard, "Low-voltage 1.9-GHz front-end receiver in 0.5-/spl mu/m CMOS technology," IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1434-1443, Oct. 2001.
    [36] A. Verma, K. K. O and J. Lin, "A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 8, pp. 3295-3300, Aug. 2006.
    [37] S. A. Z. Murad, R. K. Pokharel, M. A. Abdelghany, H. Kanaya and K. Yoshida, "High linearity 5.2 GHz CMOS up-conversion mixer using derivative superposition method," in TENCON 2010 - 2010 IEEE Region 10 Conference, 2010.
    [38] Xiang Guan and A. Hajimiri, "A 24-GHz CMOS front-end," IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
    [39] C. J. Debono, F. Maloberti and J. Micaller, "A 900 MHz, 0.9 V low-power CMOS downconversion mixer," Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169), 2001, pp. 527-530.
    [40] U. Kleine, J. Bieger and H. Seifert, "A low-noise CMOS preamplifier operating at 4.2 K," IEEE Journal of Solid-State Circuits, vol. 29, no. 8, pp. 921-926, Aug. 1994.
    [41] A. Rofougaran, J. Y. . -C. Chang, M. Rofougaran and A. A. Abidi, "A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 880-889, July 1996.

    下載圖示 校內:2024-12-01公開
    校外:2024-12-01公開
    QR CODE