| 研究生: |
陳利吉 Chen, Li-Ji |
|---|---|
| 論文名稱: |
微流道中利用電滲流控制多粒子運動路徑 Control of Multiple Particles Motion in Microchannels Using Electro-Osmotic Flow |
| 指導教授: |
黃世宏
Hwang, Shyh-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 電滲流 、粒子運動路徑 |
| 外文關鍵詞: | electro-osmotic flow |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討在微流體系統中,利用電滲流來操縱多粒子在微流道之各自運動,其回饋控制裝置包含一個即時定位粒子之視覺系統、一個驅使粒子沿預定路徑運動之控制器、以及一特殊設計之電極組。控制器根據粒子位置與預定路徑之偏差來計算電極組輸出電壓。針對特定微流道設計,可藉著改變各電極之輸出電壓來製造適當的電滲流場,其模擬乃運用FEMLAB軟體,在給定之物理常數與邊界條件下獲得。控制器需由粒子速度反求電壓,傳統上使用最小平方法來對非方矩陣做虛反置,但此法常因奇異點存在而失效,因此我們引入奇異值分解法來消除奇異點以計算近似電壓。
粒子在電滲流場之運動須考慮由布朗運動所造成之擾動,可以均值為零之隨機序列來模擬,但也可能因外在環境改變¬而產生偏移現象,須以均值非零之隨機序列來表示。當無擾動偏移時,比例(P)控制律足以產生可行的功率輸出和滿意的全程粒子運動誤差;但當擾動存在偏移時,比例積分(PI)控制律方可有效排除偏移的影響,獲得最小的末段粒子運動誤差。本文所提之最佳P或PI控制器設計皆具有良好的強健性,在系統模型參數存在誤差時仍能維持可接受的粒子運動路徑。
In the thesis, electro-osmotic actuation is employed to steer multiple particles motion independently in microchannels of a microfluidic system. The feedback control device consists of a vision system that identifies the positions of particles in real-time, a controller that drives particles along their desired trajectories, and a group of specially designed electrodes. The controller computes the output voltage of each electrode based on the difference between the particle positions and desired trajectories. For a specific microchannel design, a suitable electro-osmotic flow field can be produced by changing the voltage of each electrode, which is simulated by the FEMLAB software with given physical constants and boundary conditions. The controller demands to compute the voltages by inverting the particle velocities. For a non-square matrix, a pseudo-inverse is conventionally obtained by the least squares method. However, the method would fail because of the presence of singular points. We therefore introduce the singular value decomposition to abate singular points for the computation of the approximate voltages.
The particle motion in electro-osmotic flow should take account of the disturbance resulting from Brownian motion, which can be simulated with a zero mean random sequence. On the other hand, a shift may be encountered due to variations in the surroundings, whose simulation requires a random sequence with a non-zero mean. When there is no shift in the disturbance, the proportion (P) control law suffices to provide feasible output power and produce a satisfactory error of the particle motion for the entire path. But when the disturbance includes a shift, only the proportion-integral (PI) control law can effectively abate the influence of mean shift so as to acquire the minimum error of the particle motion for the terminal path. The proposed optimal P and PI controller designs exhibit good robustness. They can maintain acceptable paths of particle motion even though the model parameters of the system are erroneous.
[1] Ashkin, A., “History of optical trapping and manipulation of small-neutral particles, atoms and molecules,” IEEE J. Sel. Topics Quantum Electron.,vol. 6, no. 6, 841–856, 2000.
[2] Attard, P., Antelmi, D., and Larson, I., “Comparsion of the Zata Potential with the Diffuse Layer Potential from Charge Titration,” Langmuir, vol. 16, 1542-1552 , 2000.
[3] Armani, M., Chaudhary, S., Probst, R., and Shapiro, B., Using feedback
control and micro-fluidics to steer individual particles,” in Proc. IEEE
18th Int. Conf. Microelectromech. Syst., 855-858, 2005.
[4] Ben, Y., and Chang, H.-C., “Nonlinear Smoluchowski Slip Velocity and Micro-vortex Generation,” Journal of Fluid Mechanics, vol. 461, 229-238, 2002.
[5] Ben, Y., Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame , 2004.
[6] Chaudhary, S., and Shapiro, B., “Arbitrary steering of multiple particles at once in an electroosmotically driven microfluidic system,” IEEE Trans. Contr. Syst. Technol., vol. 14, no. 4,.669–680, 2006.
[7] Chi-Kuang, S.H., Yin-Chieh H., and Chin, C.P., “Cell manipulation by use of diamond microparticles as handles of optical tweezers,” J. Opt.
Soc. Amer. B, vol. 18, no. 10, 1483–1489, 2001.
[8] Cummins E.B., Griffiths S.K., Nilson, R.H., and P.H. Paul,” Conditions for similitude between the fluid velocity and electric field in electroosmotic flow,” Anal. Chem., vol. 72, no. 11, 2526–2532, 2000.
[9] Curtis J.E., Koss, B.A., and Grier, D.G., “Dynamic holographic optical
tweezers,” Opt. Commun., vol. 207, no. 1–6, 169–175, 2002.
[10] Gillespie, D. T., “The mathematics of Brownian motion and Johnson
noise,” Amer. J. Phys., vol. 64, no. 3, 225–240, 1996.
[11] Harrison, D. J. and Berg, A., “Micro Total Analysis Systems 98,” Kluwer Academic Publishers, Netherlands, 1998.
[12] Hunter, Robert J., Zeta potential in colloid science: principles and applications, Academic Press, New York , 1981
[13] Karniadakis, G.E., and Beskok, A., Micro Flows: Fundamentals and Simulation, Springer-Verlag , New York, 2002
[14] Mala,G. M. and Li, D. “Flow characteristics of water in microtubes,” Int. J. Heat Fluid Flow, vol. 20,142-148 ,1999
[15] Manz, A., Graber, N. and Widmer, H. M., “Miniaturized Total Chemical Analysis System: A Novel Concept for Chemical Sensing,” Sensors and Actuators, B1, 244-248 , 1990.
[16] Patankar N. A. and Hu H. H., “Numerical simulation of electro-osmotic
flow,” Anal. Chem., vol. 70, no. 9, 1870–1881, 1998.
[17] Peng, X. F. Peterson, G, P. and Wang, B. X., “Frictional flow charact-
eristics of water flowing through rectangular microchannel,” Exp. Heat Transfer, vol. 7, 249-264, 1994
[18] Peng, X. F. Peterson, G, P. and Wang, B. X., “Heat transfer charact-
eristics of water lowing through rectangular microchannel, ,” Exp. Heat Transfer, vol. 7, 265-283, 1999
[19] Probstein, R. F., Physicochemical Hydrodynamics: An Introduction, 2nd ed., John Wiley and Sons, New York, 1994.
[20] Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Systems,” Microprocesses and Nanotechnology vol. 99, 72-73, 1999.
[21] Theemsche, A.V., Deconinck, J., Bossche, B. V. and Bortels, L., “Nume-
rical Solution of a Multi-Ion One-Potential Model for Electroosmotic Fl-
ow in Two-Dimensional Rectangular Microchannels,” Analytical Chemistry, vol. 74, 4919-4926, 2002.
[22] Tuckermann, D. B, and Pease, R. F. W., “High-performance heat sinks for VLSI,” IEEE Electron Decice Lett., vol. 2, 136-129, 1981.
[23] Tuckermann, D. B, and Pease, R. F. W., “Optimized convective cooling using micromachined structures,” J. Electrochem. Soc., vol. 129(3), 98c, 1982.
[24] WANG, P., Applying Two-Dimensional Kalman Filtering Techniques to Digital Elevation Models for Terrain Surface Modelling. PhD thesis, School of Surveying & Spatial Information Systems, University of New South Wales, Sydney, Australia, UNISURV S-67, ISBN 0-7334-1857-0, 175pp. ,2001.
[25] Wang, B. X., and Peng, X.F., “Experimental investigation on liquid forced-convection heat through microchannels,” Int. J. Heat Mass Transfer, vol. 37, 73-81, 1994
[26] 黃錦煌 / 吳佐群 輕鬆易學--有限元素分析大析-Femlab 高立圖書 , 2004 .