簡易檢索 / 詳目顯示

研究生: 林俊谷
Lin, Chun-Ku
論文名稱: 溫度相關圓孔型電極液晶透鏡施作全息光學元件之研究
Study of holographic optical elements fabricated by means of temperature-dependent hole-patterned electrode liquid crystal lenses
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 92
中文關鍵詞: 液晶透鏡溫度相關全息光學元件菲涅爾區
外文關鍵詞: Liquid crystal lens, Holographic optical elements, Fresnel zone pattern, Temperature dependence
相關次數: 點閱:217下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究溫度相關之液晶透鏡對於全息光學元件(Holographic Optical Elements, HOEs)製作與光學性能之影響。實驗使用圓孔型電極液晶透鏡(Hole-Patterned Electrode Liquid Crystal Lens)之電極設計,先行以相位延遲環及焦距等表徵評估其光學能力,將溫度相關液晶透鏡在相同焦距之相位延遲環分佈情形以二次曲線方程式進行擬合得到其均方根值(Root Mean Square, RMS),結果顯示在相同焦距下,溫度30℃之液晶透鏡其RMS數值較小於溫度25℃之液晶透鏡。此外,兩者在球面像差量測之比較,亦顯示30℃下的液晶透鏡其球面像差數值略小於25℃下之液晶透鏡。雖然溫度因素可以改善液晶透鏡之光學能力,但以單一液晶透鏡施作全息光學元件仍無法得到理想之菲涅爾區圖樣(Fresnel Zone Pattern),因此,製作透鏡全息光學元件將以液晶透鏡結合玻璃透鏡之組合透鏡進行,其結果可在全息干涉中得到理想之菲涅爾區圖樣。分別以相同焦距之30℃與25℃液晶透鏡結合玻璃透鏡施作之透鏡全息光學元件之結果顯示,30℃液晶透鏡所製作之全息光學元件其影像重建表現皆優於25℃液晶透鏡製作之透鏡全息光學元件。

    This paper concentrates on utilizing liquid crystal lenses for recording holographic optical elements. The temperature dependence liquid crystal lenses used to fabricate holographic optical elements (HOEs) to attempt achieving better optical performance. Optical characteristics at various temperatures are assessed, revealing that temperature-controlled liquid crystal lenses demonstrate reduced spherical aberration values. However, when each type of liquid crystal lens is separately employed in recording holographic optical elements, satisfactory results regarding the Fresnel zone pattern are not attained. Hence, experiments are conducted by integrating the liquid crystal lenses with glass lenses. The results show that the optical imaging ability of the holographic optical elements fabricated using the combined lenses is enhanced, indicating that temperature control does contribute to the recording of holographic optical elements.

    摘要 i Abstract ii 誌謝 xi 目錄 xii 圖目錄 xvi 表目錄 xix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 6 第二章 實驗原理 7 2.1 液晶介紹 7 2.1.1 液晶起源 7 2.1.2 液晶分類 7 2.1.3 液晶光學特性 8 2.2 圓孔型電極液晶透鏡 12 2.2.1 液晶透鏡原理 12 2.2.2 圓孔型電極液晶透鏡之相位延遲環與焦距 15 2.2.3 圓孔型電極液晶透鏡之不連續線成因與解決方法 18 2.3 全息光學元件 20 2.3.1 全息光學元件干涉原理 20 2.3.2 全息光學元件曝光光路 23 第三章 實驗材料與裝置 26 3.1 實驗材料 26 3.1.1 5CB向列型液晶 26 3.1.2 聚醯亞胺(Polyimide)液晶配向劑 26 3.1.3光聚合薄膜(Photo-Curable Polymer Flim) 26 3.1.4 NOA65光學膠 27 3.2 圓孔型電極液晶透鏡製作 27 3.2.1 材料用途與製程設備 27 3.2.2 圓孔型電極基板製作 28 3.2.3 圓孔型電極液晶透鏡組裝 31 3.3 液晶透鏡光學能力量測 32 3.3.1 液晶透鏡量測之實驗儀器 32 3.3.2 液晶透鏡相位延遲環量測 33 3.3.3 液晶透鏡焦距量測 36 3.4 全息光學元件製作 37 3.4.1 全息光學元件之製作光路 37 3.4.2 全息光學元件之焦點還原光路 38 第四章 實驗結果與討論 40 4-1溫度相關圓孔型電極液晶透鏡量測 40 4-1.1溫度相關圓孔型電極液晶透鏡相位延遲環 40 4-1.2溫度相關圓孔型電極液晶透鏡焦距分布 42 4-2 液晶透鏡之球面像差量測 43 4-2.1溫度相關液晶透鏡之球面像差量測 43 4-2.2液晶透鏡與玻璃透鏡之球面像差比較 47 4-3 以液晶透鏡結合玻璃透鏡製作全息光學元件 52 4-3.1單一液晶透鏡製作全息光學元件之結果 52 4-3.2溫度相關液晶透鏡結合玻璃透鏡同側曝光之全息光學元件錄製結果 54 4-4 全息光學元件成像能力之比較 57 4-4.1溫度相關液晶透鏡結合玻璃透鏡之全息焦點重建 57 4-4.2溫度相關液晶透鏡結合玻璃透鏡與單一玻璃透鏡之全息光學元件成像能力之比較 59 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 68 參考資料 69

    [1] S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679-1684. (1979)
    [2] M. Ye, B. Wang, & S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl Opt. 43(35), 6407-6412. (2004)
    [3] B. Wang, M. Ye, & S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18(1), 79-81. (2005)
    [4] C. J. Hsu, J. J. Jhang, & C. Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt Express 24(15), 16722-16731. (2016)
    [5] Kyong Chan Heo, Jin Hyuk Kwon, and Jin Seog Gwag, “Liquid Crystal Lens Array with Thermally Controllable Focal Length and Electrically Convertible Lens Type”, Journal of the Optical Society of Korea, Volume 19, Number 1, page 88-94(2015)
    [6] M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
    [7]D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
    [8] Leith, E. N. & Upatnieks, J. “Reconstructed wavefronts and communication theory.” J. Optical Soc. Am. 52, 1123–1130 (1962).
    [9] Leith, E. N. & Upatnieks, J. “Wavefront reconstruction with continuous-tone objects.” J. Optical Soc. Am. 53, 1377–1381 (1963).
    [10] Leith, E. N. & Upatnieks, J. “Wavefront reconstruction with diffused illumination and three-dimensional objects.” J. Optical Soc. Am. 54, 1295–1301 (1964).
    [11] B. Lee et al, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt Lett.39(1), 127- 130(2014)
    [12] 松本正一、角田市良,“液晶之基礎與應用” 第八版,第四章,國立編 譯館,民國 94 年
    [13] Bruce A. Averill and Patricia Eldredge , “Chemistry: Principles, Patterns, and Applications,” 1st. Edition, Chap. 11.
    [14]Gomes, A. D. S. (Ed.), “New polymers for special applications,” Chap. 11: 139-164. (2012)
    [15] Amnon Yariv, Pochi Yeh, “Optical Electronics in Modern Communications,” 6th. Edition, Chap. 1, Oxford University Press Inc. (2007)
    [16] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 5, John Wiley & Sons (2006)
    [17]G. Vertogen, W. H. de Jeu, “Thermotropic Liquid Crystals, Fundamentals,” Chap. 9, Springer-Verlag, Berlin (1988)
    [18]I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Prog. Quantum Electron. 38(2), 77–117 (2014)
    [19] Choi, Y., Park, J. H., Kim, J. H., & Lee, S. D. (2003). Fabrication of a focal length variable microlens array based on a nematic liquid crystal. Optical materials, 21(1-3), 643-646.
    [20] M. Ye, & S. Sato, “Optical properties of liquid crystal lens of any size, ” Jpn. J. Appl. Phys. 41, 571-573. (2002)
    [21]M. Ye, B. Wang and S. Sato, “Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field,” Jpn. J. Appl. Phys, 42. 5086-5089. (2003)
    [22]C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt, 63 43. 4269-4274. (2012)
    [23]C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express, 19. 14999-15008. (2011)
    [24] R. J. Collier, C.B. Burckhardt, L.H. Lin, “Optical Holography,” Academic Press New York and London (1971)
    [25] Jun Li, Sebastian Gauza;,Shin-Tson Wu, “Temperature effect on liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004)
    [26] Blough, C. Gary, et al. "Effects of axial and radial gradients on Cooke triplets." Applied optics 29.28 (1990): 4008-4015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE