簡易檢索 / 詳目顯示

研究生: 蔡承翰
Tsai, Cheng-Han
論文名稱: ANGPTL4和DUSP6在調節HNSCC轉移中的功能作用
The functional role of ANGPTL4 and DUSP6 in the regulation of HNSCC metastasis
指導教授: 陳炳焜
Chen, Ben-Kuen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 頭頸癌雙重特異性磷酸酶6癌症轉移
外文關鍵詞: head and neck cancer, DUSP6, metastasis
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙重特異性磷酸酶6 ( Dual specificity phosphatase 6, DUSP6),在先前的文獻中指出是一個位在細胞質並具有p-ERK特異性結合的絲裂原活化激酶的負調節者,會透過p-ERK的途徑被誘導,在反過來抑制p-ERK的活化,並擁有著不同的角色,可扮演著腫瘤促進者或腫瘤抑制者。另外,在頭頸鱗狀細胞癌大約80%的患者都會有EGFR過度表達的情形,並有著與EGF特異性結合活化p-ERK的途徑。因此也表示DUSP6在其中可能扮演重要的角色,然而,DUSP6在頭頸鱗狀細胞癌(Head and neck squamous cell carcinoma, HNSCC)中的角色尚未被釐清。在本研究中,發現EGF在HNSCC會高度誘導DUSP6的表達,並再次確認了DUSP6會透過p-ERK的途徑被誘導,而不會透過N F  B途徑。此外,亦發現 DUSP6 在這之中 扮演著腫瘤促進者,並在將DUSP6敲除後,不僅會降低頭頸鱗狀細胞癌的爬行,還會減少腫瘤抗失巢凋亡(anoikis resistance)的能力,甚至會增加化療藥物的敏感性,藉此增加細胞凋亡。整體來說,本研究顯示DUSP6在HNSCC中扮演著腫瘤促進者的角色,在未來可能具有治療發展上面的潛力。

    Dual specificity phosphatase 6 (DUSP6), which was pointed out in the previous literature as a negative regulator of mitogen-activated kinase that is located in the cytoplasm and has specific binding to p-ERK, passes through p-ERK. The pathway is induced, which in turn inhibits the activation of p-ERK, and has a different role, can act as a tumor promoter or tumor suppressor. In addition, about 80% of patients with head and neck squamous cell carcinoma overexpress EGFR, and there is a well-known pathway that specifically binds to EGF to activate p-ERK. Therefore, it also indicates that DUSP6 may play an important role in it, however, the role of DUSP6 in head and neck squamous cell carcinoma (HNSCC) has not yet been clarified. In this study, EGF was found to highly induce DUSP6 expression in HNSCC, and it was confirmed again that DUSP6 would be induced through the p-ERK pathway instead of the NF-B pathway. In addition, it has also been found that DUSP6 plays a role as a tumor promoter, and after knocking down DUSP6, it will not only reduce the crawling of squamous cell carcinoma of the head and neck, but also reduce the ability of the tumor to resist anoikis. It may even increase the sensitivity of chemotherapeutic drugs, thereby increasing apoptosis. Overall, this study shows that DUSP6 plays the role of a tumor promoter in HNSCC and may have potential for therapeutic development in the future.

    目錄 中文摘要………………………………………………………………… Ⅰ 英文摘要………………………………………………………………… Ⅱ 誌謝……………………………………………………………………… Ⅳ 目錄……………………………………………………………………… Ⅵ 表目錄…………………………………………………………………… Ⅸ 圖目錄…………………………………………………………………… Ⅹ 縮寫表…………………………………………………………………… Ⅺ 一、研究背景……………………………………………………………… 1 1-1 頭頸鱗狀細胞癌………………………………………………… 1 1-2 頭頸癌和表皮生長因子的關聯性……………………………… 3 1-3 發炎促進頭頸癌的進程………………………………………… 5 1-4 血管生成素樣-4………………………………………………… 6 1-5 雙重特異性磷酸酶6 簡介……………………………………… 7 1-6 研究目的………………………………………………………… 11 二、材料與方法…………………………………………………………… 13 2-1 細胞株培養……………………………………………………… 13 2-2 RNA 萃取………………………………………………………… 13 2-3 反轉錄反應……………………………………………………… 14 2-4 即時定量聚合酶連鎖反應……………………………………… 14 2-5 全細胞裂解……………………………………………………… 15 2-6 西方墨點法……………………………………………………… 15 2-7 短暫性基因致弱實驗…………………………………………… 16 2-8 NF-B 與ERK 抑制實驗 ………………………………………… 16 2-9 抗失巢凋亡實驗………………………………………………… 17 2-10 細胞遷移實驗 ………………………………………………… 17 2-11 報導基因轉染實驗 …………………………………………… 18 2-12 細胞黏附實驗 ………………………………………………… 19 三、實驗結果 ………………………………………………………………20 3-1 PGE2 和EGF 誘導ANGPTL4 mRNA 的表達 ……………………… 20 3-2 PGE2所誘導的ANGPTL4 不透過PPAR-的路徑………………… 20 3-3 PGE2 聯合EGF 不會更促進細胞的爬行………………………… 21 3-4 PGE2 會增進細胞與細胞間的黏附……………………………… 22 3-5 PGE2 不會誘導DUSP6 的表達…………………………………… 22 3-6 EGF 所誘導的DUSP6 並不會調控到ANGPTL4 的表達………… 23 3-7 在低濃度的EGF 處理時, DUSP6 的表達量就到達上限……… 24 3-8 敲除DUSP6 會降低細胞侵襲的能力…………………………… 25 3-9 敲除DUSP6 增進細胞的失巢凋亡……………………………… 26 3-10 EGF 所誘導的DUSP6 是透過p-ERK 的途徑,而不是NF-B… 27 四、討論 ……………………………………………………………………28 4-1 PGE2聯合EGF 對FaDu 細胞的功能影響………………………… 28 4-2 DUSP6 在HNSCC 中的功能與角色 ……………………………… 29 4-3 未來研究方向 …………………………………………………… 32 參考文獻…………………………………………………………………… 34 圖表………………………………………………………………………… 42 表目錄 表一、反轉錄世紀反應物 ………………………………………………… 43 表二、即時定量聚合酶連鎖反應用引子序列與黏合溫度 ……………… 44 表三、西方墨點法使用之抗體 …………………………………………… 45 圖目錄 圖一、PGE2 和EGF 誘導ANGPTL4 mRNA 的表達…………………………… 46 圖二、PGE2所誘導的ANGPTL4 不透過PPAR-的路徑 ………………… 47 圖三、PGE2聯合EGF 不會更促進細胞的爬行…………………………… 48 圖四、PGE2 會增進細胞與細胞間的黏附 ………………………………… 50 圖五、PGE2不會誘導DUSP6 的表達……………………………………… 52 圖六、EGF 所誘導的DUSP6 並不會調控到ANGPTL4 的表達…………… 53 圖七、在低濃度的EGF 處理時, DUSP6 的表達量就到達上限………… 57 圖八、敲除DUSP6 會降低細胞侵襲的能力……………………………… 59 圖九、敲除DUSP6 增進細胞的失巢凋亡 ………………………………… 64 圖十、EGF 所誘導的DUSP6 是透過p-ERK 的途徑,而不是NF-B……… 67 圖十一、敲除DUSP6 會降低細胞的生存能力………………………………69

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.
    2. Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clin North Am. 2014;26(2):123-41.
    3. Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269-82.
    4. Jethwa AR, Khariwala SS. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Rev. 2017;36(3):411-23.
    5. Chen YJ, Chang JT, Liao CT, Wang HM, Yen TC, Chiu CC, et al. Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci. 2008;99(8):1507-14.
    6. Mehanna H, Beech T, Nicholson T, El-Hariry I, McConkey C, Paleri V, et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer--systematic review and meta-analysis of trends by time and region. Head Neck. 2013;35(5):747-55.
    7. Hwang TZ, Hsiao JR, Tsai CR, Chang JS. Incidence trends of human papillomavirus-related head and neck cancer in taiwan, 1995-2009. Int J Cancer. 2015;137(2):395-408.
    8. Marur S, Forastiere AA. Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2008;83(4):489-501.
    9. Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91(3):386-96.
    10. Lechner M, Frampton GM, Fenton T, Feber A, Palmer G, Jay A, et al. Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med. 2013;5(5):49.
    11. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576-82.
    12. Burtness B, Bauman JE, Galloway T. Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol. 2013;14(8):e302-9.
    13. Echarri MJ, Lopez-Martin A, Hitt R. Targeted therapy in locally advanced and recurrent/metastatic head and neck squamous cell carcinoma (LA-R/M HNSCC). Cancers (Basel). 2016;8(3).
    14. Chen JH, Yen YC, Liu SH, Yuan SP, Wu LL, Lee FP, et al. Outcomes of induction chemotherapy for head and neck cancer patients: a combined study of two national cohorts in taiwan. Medicine (Baltimore). 2016;95(7):e2845.
    15. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962;237:1555-62.
    16. Ward CW, Garrett TP. The relationship between the L1 and L2 domains of the insulin and epidermal growth factor receptors and leucine-rich repeat modules. BMC Bioinformatics. 2001;2:4.
    17. Ward CW, Hoyne PA, Flegg RH. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins. 1995;22(2):141-53.
    18. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003;11(2):507-17.
    19. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59(2 Suppl):21-6.
    20. Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34(34):8690-707.
    21. Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993;4(1):121-33.
    22. Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389-400.
    23. Arkell RS, Dickinson RJ, Squires M, Hayat S, Keyse SM, Cook SJ. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cell Signal. 2008;20(5):836-43.
    24. Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, Holcmann M. The epidermal growth factor receptor: from development to tumorigenesis. Differentiation. 2007;75(9):770-87.
    25. Hackel PO, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol. 1999;11(2):184-9.
    26. Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4(6):499-515.
    27. Zhang Z, Dong Z, Lauxen IS, Filho MS, Nor JE. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 2014;74(10):2869-81.
    28. Chang WC, Wu SL, Huang WC, Hsu JY, Chan SH, Wang JM, et al. PTX3 gene activation in EGF-induced head and neck cancer cell metastasis. Oncotarget. 2015;6(10):7741-57.
    29. Hsu JY, Chang KY, Chen SH, Lee CT, Chang ST, Cheng HC, et al. Epidermal growth factor-induced cyclooxygenase-2 enhances head and neck squamous cell carcinoma metastasis through fibronectin up-regulation. Oncotarget. 2015;6(3):1723-39.
    30. Hsu JY, Chang JY, Chang KY, Chang WC, Chen BK. Epidermal growth factor-induced pyruvate dehydrogenase kinase 1 expression enhances head and neck squamous cell carcinoma metastasis via up-regulation of fibronectin. FASEB J. 2017;31(10):4265-76.
    31. Liao YH, Chiang KH, Shieh JM, Huang CR, Shen CJ, Huang WC, et al. Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene. 2017;36(16):2228-42.
    32. Messina S, Frati L, Leonetti C, Zuchegna C, Di Zazzo E, Calogero A, et al. Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas. Oncogene. 2011;30(35):3813-20.
    33. Costa C, Soares R, Reis-Filho JS, Leitao D, Amendoeira I, Schmitt FC. Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol. 2002;55(6):429-34.
    34. Wilson JC, Anderson LA, Murray LJ, Hughes CM. Non-steroidal anti-inflammatory drug and aspirin use and the risk of head and neck cancer: a systematic review. Cancer Causes Control. 2011;22(5):803-10.
    35. Tan XL, Reid Lombardo KM, Bamlet WR, Oberg AL, Robinson DP, Anderson KE, et al. Aspirin, nonsteroidal anti-inflammatory drugs, acetaminophen, and pancreatic cancer risk: a clinic-based case-control study. Cancer Prev Res (Phila). 2011;4(11):1835-41.
    36. Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem. 2003;278(37):35451-7.
    37. Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350(19):1937-44.
    38. Kim SH, Park YY, Kim SW, Lee JS, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res. 2011;71(22):7010-20.
    39. Iitaka D, Moodley S, Shimizu H, Bai XH, Liu M. PKCdelta-iPLA2-PGE2-PPARgamma signaling cascade mediates TNF-alpha induced claudin 1 expression in human lung carcinoma cells. Cell Signal. 2015;27(3):568-77.
    40. Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 2000;275(37):28488-93.
    41. Wiesner G, Morash BA, Ur E, Wilkinson M. Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol. 2004;180(3):R1-6.
    42. Lichtenstein L, Berbee JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol. 2007;27(11):2420-7.
    43. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep. 2012;32(3):211-9.
    44. Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000;20(14):5343-9.
    45. Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG, Kersten S. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res. 2016;57(9):1670-83.
    46. Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RL, et al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A. 2005;102(17):6086-91.
    47. La Paglia L, Listi A, Caruso S, Amodeo V, Passiglia F, Bazan V, et al. Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway. PPAR Res. 2017;2017:8187235.
    48. Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto S, et al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res. 2003;63(20):6651-7.
    49. Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal. 2004;16(7):769-79.
    50. Huang CY, Tan TH. DUSPs, to MAP kinases and beyond. Cell Biosci. 2012;2(1):24.
    51. Keyse SMaG, M. Amino acid sequence similarity between CLIO0, a dual-specificity MAP kinase phosphatase and cdc25. 1993.
    52. Theodosiou A, Ashworth A. MAP kinase phosphatases. Genome Biol. 2002;3(7):REVIEWS3009.
    53. Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000;14(1):6-16.
    54. Turjanski AG, Vaque JP, Gutkind JS. MAP kinases and the control of nuclear events. Oncogene. 2007;26(22):3240-53.
    55. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838-49.
    56. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807-69.
    57. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279-90.
    58. Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994;4(1):82-9.
    59. Kondoh K, Nishida E. Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta. 2007;1773(8):1227-37.
    60. Ekerot M, Stavridis MP, Delavaine L, Mitchell MP, Staples C, Owens DM, et al. Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J. 2008;412(2):287-98.
    61. Falco A, Festa M, Basile A, Rosati A, Pascale M, Florenzano F, et al. BAG3 controls angiogenesis through regulation of ERK phosphorylation. Oncogene. 2012;31(50):5153-61.
    62. Xu S, Furukawa T, Kanai N, Sunamura M, Horii A. Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J Hum Genet. 2005;50(4):159-67.
    63. Zhang Z, Kobayashi S, Borczuk AC, Leidner RS, Laframboise T, Levine AD, et al. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis. 2010;31(4):577-86.
    64. Chan DW, Liu VW, Tsao GS, Yao KM, Furukawa T, Chan KK, et al. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis. 2008;29(9):1742-50.
    65. Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A. Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am J Pathol. 2003;162(6):1807-15.
    66. Moncho-Amor V, Pintado-Berninches L, Ibanez de Caceres I, Martin-Villar E, Quintanilla M, Chakravarty P, et al. Role of Dusp6 phosphatase as a tumor suppressor in non-small cell lung cancer. Int J Mol Sci. 2019;20(8).
    67. James NE, Beffa L, Oliver MT, Borgstadt AD, Emerson JB, Chichester CO, et al. Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget. 2019;10(36):3315-27.
    68. Degl'Innocenti D, Romeo P, Tarantino E, Sensi M, Cassinelli G, Catalano V, et al. DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells. Endocr Relat Cancer. 2013;20(1):23-37.
    69. Song H, Wu C, Wei C, Li D, Hua K, Song J, et al. Silencing of DUSP6 gene by RNAi-mediation inhibits proliferation and growth in MDA-MB-231 breast cancer cells: an in vitro study. Int J Clin Exp Med. 2015;8(7):10481-90.
    70. Nunes-Xavier CE, Tarrega C, Cejudo-Marin R, Frijhoff J, Sandin A, Ostman A, et al. Differential up-regulation of MAP kinase phosphatases MKP3/DUSP6 and DUSP5 by Ets2 and c-Jun converge in the control of the growth arrest versus proliferation response of MCF-7 breast cancer cells to phorbol ester. J Biol Chem. 2010;285(34):26417-30.
    71. Mirza AZ, Althagafi, II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 2019;166:502-13.
    72. Elix C, Pal SK, Jones JO. The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian J Androl. 2018;20(3):238-43.
    73. Hsu SF, Lee YB, Lee YC, Chung AL, Apaya MK, Shyur LF, et al. Dual specificity phosphatase DUSP6 promotes endothelial inflammation through inducible expression of ICAM-1. FEBS J. 2018;285(9):1593-610.
    74. Ko SC, Huang CR, Shieh JM, Yang JH, Chang WC, Chen BK. Epidermal growth factor protects squamous cell carcinoma against cisplatin-induced cytotoxicity through increased interleukin-1beta expression. PLoS One. 2013;8(2):e55795.
    75. Wong VC, Chen H, Ko JM, Chan KW, Chan YP, Law S, et al. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype. Int J Cancer. 2012;130(1):83-95.
    76. Wu QN, Liao YF, Lu YX, Wang Y, Lu JH, Zeng ZL, et al. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Lett. 2018;412:243-55.
    77. Sarkozi R, Miller B, Pollack V, Feifel E, Mayer G, Sorokin A, et al. ERK1/2-driven and MKP-mediated inhibition of EGF-induced ERK5 signaling in human proximal tubular cells. J Cell Physiol. 2007;211(1):88-100.
    78. Mehra R, Cohen RB, Burtness BA. The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clin Adv Hematol Oncol. 2008;6(10):742-50.
    79. Saba NF, Hurwitz SJ, Kono SA, Yang CS, Zhao Y, Chen Z, et al. Chemoprevention of head and neck cancer with celecoxib and erlotinib: results of a phase ib and pharmacokinetic study. Cancer Prev Res (Phila). 2014;7(3):283-91.
    80. Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med. 2018;15(1):14-28.

    無法下載圖示 校內:2025-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE