簡易檢索 / 詳目顯示

研究生: 蔡琬琦
Tsai, Wan-Chi
論文名稱: 體外碎石術中波傳之數值模擬
Numerical Simulation for Wave Propagation in Lithotripsy
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 66
中文關鍵詞: 邊界積分法體外碎石術
外文關鍵詞: boundary integral method, lithotripsy
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要介紹一種數值方法,用以計算體外碎石術時,結石附近的壓力強度。在我們的數值方法中,水袋與人體體表的介面為使用邊界元素法的邊界,以邊界區分成兩個計算區域,分別以幾何光學與邊界積分法求解波方程去做計算。
    體外碎石術中,我們用半橢球形狀的鋼碗來使由焦點位置發出的所有波束聚焦在另一個焦點位置上的結石。整個數值方法主要可以被分為三個步驟。首先,我們考慮爆震波經過鋼碗的反射到達邊界上的壓力強度值。由於,橢球有非常特殊的幾何性質,利用這個原理,我們可經由簡單的計算得到波經過反射後到達邊界上每一點的強度值。因邊界上每一點的強度值都不同,所以,我們將邊界切成三角形網格,在三角形之面積足夠小的情形下,我們取每個三角形重心位置的強度值,近似整個三角形上每一點的強度值。接著,我們再求出波穿過一個三角形孔洞的繞射壓力強度值與波由邊界到達結石所需的時間,並求出在該時間下,邊界上每個三角形給腎結石的壓力強度值。藉此,求出結石所受到的壓力值。

    In this paper, we introduce a numerical method to compute the pressure intensity around the kidney stone for lithotripsy. We divide the whole computational domain into two parts by the boundary in our numerical method. We deal with one part by geometric optic, and another part be solved by boundary integral method. Using the boundary integral method to solve wave equation with the boundary condition, we transfer the 3D computational domain into 2D boundary, and only need to concentrate the wave equation on the boundary without considering the whole domain. There are three primary processes in our method.

    First, we consider the pressure intensity of all points on the boundary.
    Since the ellipsoid has very special geometric properties, the wave be generated by source at one of the focus, and then it must be reflected by the ellipsoid and propagate to another focus which is also the position of the kidney stone. Hence, using the way, we obtain the pressure intensity of all the points on the boundary by simple calculation.
    Since there are different pressure intensity values of all the points on the boundary, we give a mesh with triangle elements on the boundary, and take the pressure intensity value at the barycenter of a triangle on the mesh as the pressure intensity of all the points on this triangle when the area of the triangle is small enough. Second, we need to compute the diffracted pressure intensity value of a triangle opening which is that a triangle opening provides for the kidney stone.
    Then, we multiply the diffracted pressure intensity value of a triangle opening by its reflected pressure intensity, and obtain the final value which is that a triangle opening contributes to the kidney stone after reflection. Finally, we sum up all final intensity pressure values of
    the triangle openings with their relative time, which is the time that waves propagate from the barycenter of a triangle on the boundary to the sensor point. Consequently, we get the pressure intensity value at
    the kidney stone.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . 2 1.1 Introduction to Lithotripsy of Shockwaves . . . . . . . . . . . 2 1.2 Introduction to Waves Phenomena . . . . . . . . . . . . . . . 5 2 Formula . . . . . . . . . . . . . . . . . . . . . 10 2.1 Equation for waves in solid . . . . . . . . . . . . . . . . . . . . 10 2.2 Equation for waves in Fluid . . . . . . . . . . . . . . . . . . . 11 2.3 Solution of Wave Equation . . . . . . . . . . . . . . . . . . . . 16 2.4 Fundamental solution . . . . . . . . . . . . . . . . . . . . . . . 24 2.5 Boundary Integral Method for Solving Wave Equation . . . . 26 2.5.1 Examples of Boundary Integral Method . . . . . . . . . 32 2.6 Formula for the Reflected Pressure Intensity on the Boundary 33 3 Numerical Method 40 3.1 Numerical Scheme for the Reflected Intensity on the Boundary 41 3.2 Numerical Scheme of Diffracted Intensity on the Boundary . . 42 3.2.1 Numerical Scheme for the Mesh on the Boundary . . . 43 3.2.2 Numerical Scheme for Diffraction of a Triangle Opening on the Boundary . . . . . . . . . . . . . . . . . . . 44 3.3 Numerical Scheme of Focusing . . . . . . . . . . . . . . . . . . 50 4 Results and Discussions 52 4.1 Modification of the scale to satisfy the fact . . . . . . . . . . . 52 4.2 The Pressure Intensity in a Triangle Opening of The Mesh on The Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 The Distribution of the pressure intensity around the kidney stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4 Improving of Our Numerical Scheme at theMesh on the Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 Applications of Mechanics in the Shockwave Lithotripsy . . . 64

    [1] Alfio Quarteroni, Riccardo Sacco, Fausto Saleri, “Numerical Mathematics.”
    , Springer.
    [2] J. Stoer, R. Bulirsch: “Introduction to Numerical Analysis.” Springer-
    Verlag, 1983
    [3] J.D.Achenbach: “wave propagation in elastic solid” North-Holland series
    in applied mathematics and mechanics;v. 16, 1993
    [4] Kincaid, David (David Ronald)/Cheney, E. W. (Elliott Ward), “Numerical
    analysis :mathematics of scientific computing ” ,Brooks/Cole
    [5] Kevorkian, J, “Partial differential equations :analytical solution techniques
    .” ,Brooks/Cole Advanced Books
    [6] Michael Grasso, ”Extracorporeal Shockwave Lithotripsy” Journal of
    Biomechanical Engineering February 2002 – Volume 124, Issue 1, pp.
    133-134
    [7] Shyh-JenWang,”The Modulus of Toughness of Urinary Calculi” Journal
    of Biomechanical Engineering February 2002 – Volume 124, Issue 1, pp.
    133-134
    [8] Oleg A. Sapozhnikov, ”Modeling elastic wave propagation in kidney
    stones with application to shock wave lithotripsy” Acoustical Society of
    America Journal, Volume 118, Issue 4, pp. 2667-2676 (2005).
    [9] N. P. Cohen1, and H. N. Whitfield1”Mechanical testing of urinary calculi
    ” World Journal of Urology World J Urol (1993) pp. 13-18
    [10] Xufeng Xi and Pei Zhong,”Dynamic photoelastic study of the transient
    stress field in solids during shock wave lithotripsy” Journal of the Acoustical
    Society of America J Acoust Soc Am. 2001 Mar; pp. 1226-39.
    [11] Heimbach D, Jacobs D, Hesse A, Muller SC, Zhong P, Preminger GM,
    ”How to improve lithotripsy and chemolitholysis of brushite-stones: an
    in vitro study” Urological research Urol Res 1999 Aug;27(4):266-71.

    下載圖示 校內:立即公開
    校外:2007-06-30公開
    QR CODE