簡易檢索 / 詳目顯示

研究生: 何昇晉
Ho, Sheng-Chin
論文名稱: 奈米結構中的交互作用與擬磁場之量子傳輸研究
Quantum transport in nano-structures with interaction and/or pseudo-magnetic field
指導教授: 陳則銘
Chen, Tse-Ming
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 117
中文關鍵詞: 量子傳輸交互作用擬磁場
外文關鍵詞: quantum transport, interaction, pseudo-magnetic field
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今半導體已進入奈米等級製成,量子效應也變得不可忽視。因此,近年來量子傳輸的研究也盛行。這項子學門主要藉由電性傳輸揭露了量子干涉、量子化、疊加、拓樸、旋性等種種性質。而在未來應用方面,因為量子性質,可更加對於度量衡學的精準化、促進未來電晶體的發展,甚至於量子電腦的實現。

    在我的博士研究中,我主要在研究一維以及二維系統中的量子傳輸。在低溫、低維度系統中,量子現象的顯著得以利用外加電性量測來加以證實,並且進一步的去操控、應用。在一維系統中,因為外加電場導致著電子傳輸的限制,電子-電子交互作用變得極為顯著,影響著傳輸性質讓運動中電子展現出液態特性甚至是固態特性。而另一方面,曲率在二維系統中扮演著很重要的角色,影響著電子的傳輸也產生出類似磁場的行為,被稱之為擬磁場。因此,在本論文中,我主要在研究這兩種特殊的效應在不同維度中的貢獻。

    第一個題目,是關於研究一維系統中的鋸齒形線條(zigzag)的Wigner晶格。Wigner晶格自1934被理論提出後就不斷的被研究,但由於本身的不穩定結構的特性,使得大部分的探針偵測系統都難以描繪本身晶格結構。在我的研究題目中,利用了可調式的量子線,在其中形成一維的Wigner晶格,並且可隨著量子線的寬度調整,讓線性晶格轉換成鋸齒形排列晶格。我們在此量子線旁邊設置一偵測器,利用磁聚焦的技術可以直接量測電子密度的分布。當施加一小磁場時,由量子線所射出的電子會因為迴旋運動的關係,注入到偵測器。因此在實驗結果中,當晶格結構轉換時,會因為射出電子束從一束變成兩束,而可以利用偵測器量測到電子束的變化。進一步,磁聚焦技術甚至可以量測電子自旋的極化方向藉由量子線本身的自旋極化特性。此兩項研究數據證明了Wigner晶格的轉換,也驗證了我們確實觀測到鋸齒狀排列的晶格結構。最後,在實驗中也量測了Wigner晶格的溶解溫度,並且與先前的研究做比較。我們的數據藉由全電性的操控,揭示了一維的Wigner晶格的相位轉換以及自旋相位轉換,提供了一項可能的途徑來深入研究Wigner晶格的相位變化以及未來可能應用。

    第二項題目,我們展現了兩種新形態的霍爾效應。這兩種霍爾效應分別稱為線性和非線性異常霍爾效應,而且是存在於時間返演對稱之中,這也不同於以往的認知:霍爾電導(電阻)的出現必須要破壞時間返演對稱。我們將雙層石墨烯放置在一周期性波浪紋路的氮化硼上,使石墨烯產生應力。因為這應力的關係,影響了雙層石墨烯之間的層間交互作用(Interlayer coupling)產生了時空間以及動量空間的擬磁場,也扭曲石墨烯的費米分布而最後導致了傾斜的狄拉克能量錐伴隨著類Rashba的自旋軌道耦合效應以及貝利曲率偶極(Berry curvature dipole)。實驗中,我們觀測到了在零磁場下,霍爾電阻隨著閘極的改變呈現非零的特殊分布,此數據也與理論非常符合。而進一步的,也在此樣品中量測到二次諧振的電阻訊號,即為非線性異常霍爾效應。在這項研究中,我們利用應力工程,可直接利用奈米製程技術來調控石墨烯的能帶結構,甚至可以創造出特殊的貝利曲率,提供了一個方法來操控層間交互作用的途徑。

    Current scaling technology in the field of semiconductor engineering has advanced to include nano-size architecture, a context in which it is necessary to consider quantum effects, which, in turn, provide a basis for research into quantum transport. This subject can be apprehended through the lens of electronic transport in regard to interference, quantization, superposition, topology, and chirality on semi-conducting materials. Simultaneously, scaling technology also has practical implications given its applicability as a criterion of metrology, as a means of improving transistor performance, and its potential to realize prospective quantum computers. In this thesis, I focus on 1D and 2D quantum transport in low-temperature environments in order to investigate both the impact of electronelectron interactions when electrons are constricted in quantum wires and the manifestation of pseudo-magnetic fields in engineered 2D materials. These experiments produced interesting and intuitive results via electronic measurement and thereby demonstrate the evolution of electronic crystal and topological consequences. Two projects are described herein: imaging the zigzag Wigner phase transition in confinement-tunable quantum wires and the anomalous Hall effect in the strained bilayer graphene without a magnetic field. In the first project, I present the observation of the zigzag Wigner lattice in a 1D system. The Wigner crystal can be formed in confinement-tunable quantum wires, which can be controlled further in its phase by changing the effective width. The operation of an on-chip detector is introduced including in reference to spatial mapping and spin analysis. The experimental results show the Wigner phase transition via the use of the detector, which relies on electron focusing to determine the electron density distribution and probe the spin properties. The melting temperature for Wigner crystallization and the accompanying spin depolarization are also reported. On this basis, the results describe the formation of the 1D Wigner crystal. In addition, the results account for the crystals spin physics, which can be controlled electrically in semiconductor systems. Thus, a feasible route is proposed for experimental research into Wigner crystals and their technological applications in quantum information science. In the second project, I demonstrate two new types of Hall effects, referred to as the linear and nonlinear anomalous Hall effects under time-reversal symmetry, in an artificial corrugated bilayer graphene system designed by myself in collaboration with a research team. The interplay between the pseudo-magnetic field and the interlayer coupling is induced by the distortion of the bilayer graphene, which leads to tilted Dirac cones with Rashba-like valley-orbit coupling and inhomogeneous Berry curvature. Simultaneously, numerical calculations of the band dispersion and Hall contribution support the results consistent with the theoretical prediction. This new class of condensed-matter systems makes it possible to modify the band structure and more remarkably to access a new exotic phase of matter via strain engineering. The ability to artificially create a nontrivial band structure and Berry curvatures from conventional two-dimensional materials, such as graphene, via patterned lattice deformation has the potential to open new avenues for the exploration of a new category of matter in condensed physics.

    Contents Publications i Abstract ii Acknowledgements vii 1 Introduction 1 1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Wigner crystal in one-dimensional quantum wires . . . . . . . . . . . . . . 3 1.3 Strained bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Theoretical background 6 2.1 One-dimensional Wigner crystal . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 One-dimensional quantum transport . . . . . . . . . . . . . . . . . 6 2.1.2 Wigner crystal in 1D quantum wire . . . . . . . . . . . . . . . . . 7 2.1.3 Zigzag Wigenr formation in 1D quantum wire . . . . . . . . . . . . 9 2.1.4 Spin physics of zigzag Wigner crystals . . . . . . . . . . . . . . . 9 2.2 Graphene properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Electronic properties of monolayer graphene . . . . . . . . . . . . 15 2.2.2 Strain-induced pseudo-magnetic field in bilayer graphene . . . . . . 16 2.2.3 Berry phase effect . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Basic concepts of the Berry phase effect . . . . . . . . . . . . . . . 20 3 Device fabrication 26 3.1 Fabrication of magnetic focusing device . . . . . . . . . . . . . . . . . . . 26 3.2 Fabrication of the corrugated bilayer graphene device . . . . . . . . . . . . 27 3.2.1 Mechanical exfoliation . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Hot pick-up transfer technique . . . . . . . . . . . . . . . . . . . . 34 3.2.3 Electron-beam lithography and contact evaporation . . . . . . . . . 40 4 Imaging the zigzag Wigner crystal in confinement-tunable quantum wires 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Characteristics of the on-chip charge spatial detector . . . . . . . . . . . . 45 4.2.1 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Principle of spatial analysis: magnetic focusing technique . . . . . 46 4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Imaging of Wigner crystal transition . . . . . . . . . . . . . . . . . 49 4.3.2 Magnetic focusing spin detector concept . . . . . . . . . . . . . . . 55 4.3.3 Spin phase diagram of 1D Wigner crystal . . . . . . . . . . . . . . 58 4.3.4 Melting of 1D Wigner crystal . . . . . . . . . . . . . . . . . . . . 60 5 Anomalous Hall effect in the artificially corrugated bilayer graphene 66 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Artifically corrugated bilayer graphene . . . . . . . . . . . . . . . . . . . . 72 5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.1 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.2 Linear anomalous Hall response. . . . . . . . . . . . . . . . . . . . 75 5.3.3 Time reversal invariant linear AHE. . . . . . . . . . . . . . . . . . 80 5.3.4 Non-linear anomalous Hall response . . . . . . . . . . . . . . . . . 82 5.3.5 Theoretical derivation of corrugated bilayer graphene . . . . . . . . 88 6 Conclusion 95 A Appendix 108

    [1] H. L. Stormer, R. Dingle, A. C. Gossard, W. Wiegmann, M. D. Sturge, Twodimensional
    electron gas at a semiconductor-semiconductor interface. Sol. State Commun.
    29, 705 (1979).
    [2] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties. Rev.
    Mod. Phys. 82, 1959 (2010).
    [3] M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. L. Gyorffy, Firstprinciple
    calculations of the Berry curvature of Bloch states for charge and spin transport
    of electrons. J. Phys.: Condens. Matter. 24, 213302 (2012).
    [4] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao and X. Xu,
    Valleytronics in 2D materials. Nat. Rev. Mat. 1, 16055 (2016).
    [5] R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A.
    Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. S. Levitov, A. K. Geim, Detecting
    Topological Currents in Graphene Superlattices. Phys. Rev. Lett. 346, 448 (2014).
    [6] Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K.Watanabe, T. Taniguchi and S.
    Tarucha, Generation and detection of pure valley current by electrically induced Berry
    curvature in bilayer graphene. Nat. Phys. 11, 1032 (2015).
    [7] K.-F. Berggren and M. Pepper, Electrons in one dimension. Phil. Trans. R. Soc. A 368,
    1141 (2010).
    [8] Chen, T. M., Electron-electron interactions in GaAs quantum wires, Ph. D. thesis, Cambridge
    university (2009).
    [9] K.-F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper, Magnetic depopulation
    of 1D subbands in a narrow 2D electron gas in a GaAs:AlGaAs heterojunction. Phys.
    Rev. Lett. 56, 1769 (1986).
    [10] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven,
    D. van der Marel, and C. T. Foxon, Quantized conductance of point contacts in
    a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).
    [11] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G.
    Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport
    and the quantisation of the ballistic resistance. J. Phys. C. Solid State Phys. 21, L209
    (1988).
    [12] M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt, K. D. Maranowski,
    A. C. Gossard, Imaging Coherent Electron Flow from a Quantum Point Contact.
    Science 289, 2323 (2000).
    [13] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie,
    Possible Spin Polarization in a One-Dimensional Electron Gas. Phys. Rev. Lett. 7, 135
    (1996).
    [14] M. J. Iqbal, Roi Levy, E. J. Koop, J. B. Dekker, J. P. de Jong, J. H. M. van der Velde,
    D. Reuter, A. D.Wieck, Ramon Aguado, Yigal Meir and C. H. van derWal, Odd and
    even Kondo effects from emergent localization in quantum point contacts. Nature 501,
    79 (2013).
    [15] F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo, D. Schuh,
    W. Wegscheider, J. von Delft and S. Ludwig, Microscopic origin of the 0.7-anomaly in
    quantum point contacts. Nature 501, 73 (2013).
    [16] B. Brun, F. Martins, S. Faniel, B. Hackens, G. Bachelier, A. Cavanna, C. Ulysse, A.
    Ouerghi, U. Gennser, D. Mailly, S. Huant, V. Bayot, M. Sanquer and H. Sellier,Wigner
    and Kondo physics in quantum point contacts revealed by scanning gate microscopy.
    Nat. Commun. 5, 4290 (2014).
    [17] E. P. Wigner, On the Interaction of Electrons in Metals. Phys, Rev. 46, 1002 (1934).
    [18] A. V. Filinov, M. Bonitz and Yu. E. Lozovik, Wigner Crystallization in Mesoscopic 2D
    Electron Systems. Phys. Rev. Lett. 86, 3851 (2001).
    [19] S. M. Reimann and M. Manninen, Electronic structure of quantum dots. Rev. Mod.
    Phys. 74, 1283 (2002).
    [20] C. Yannouleas and U. Landman, Symmetry breaking and quantum correlations in finite
    systems: studies of quantum dots and ultracold Bose gases and related nuclear and
    chemical methods. Rep. Prog. Phys. 70, 2067 (2007).
    [21] V. V. Deshpande and M. Bockrath, The one-dimensional Wigner crystal in carbon nanotubes.
    Nat. Phys. 4, 314 (2008).
    [22] W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D.
    A. Ritchie, Incipient Formation of an Electron Lattice in a Weakly Confined Quantum
    Wire. et al., Phys. Rev. Lett. 102, 056804 (2009).
    [23] Y. Gul, S. N. Holmes, M. Myronov, S. Kumar, and M. Pepper, Self-organised fractional
    quantisation in a hole quantum wire. et al. J. Phys.: Condens. Matter 30, 09LT01
    (2018).
    [24] S. Kumar, K. J. Thomas, L.W. Smith, M. Pepper, G. L. Creeth, I. Farrer, D. Ritchie,
    G. Jones, and J. Griffiths, Many-body effects in a quasi-one-dimensional electron gas.
    Phys. Rev. B 90, 201304(R) (2014).
    96 BIBLIOGRAPHY
    [25] L.W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C.
    Jones, and D. A. Ritchie, Row coupling in an interacting quasi-one-dimensional quantum
    wire investigated using transport measurements. Phys. Rev. B 80, 041306 (2009).
    [26] Sheng-Chin Ho, Heng-Jian Chang, Chia-Hua Chang, Shun-Tsung Lo, Graham Creeth,
    Sanjeev Kumar, Ian Farrer, David Ritchie, Jonathan Griffiths, Geraint Jones, Michael
    Pepper, and Tse-Ming Chen, Imaging the Zigzag Wigner Crystal in Confinement-
    Tunable Quantum Wires. Phys. Rev. Lett. 121, 106801 (2018).
    [27] J. S. Meyer, K. A. Matveev and A. I. Larkin, Phys. Rev. Lett. Transition from a One-
    Dimensional to a Quasi-One-Dimensional State in Interacting Quantum Wires. 98,
    126404 (2007).
    [28] J. S. Meyer and K. A. Matveev, Wigner crystal physics in quantum wires. J. Phys.:
    Condens. Matter 21, 023203 (2009).
    [29] E. Welander, I. I. Yakimenko and K.-F. Berggren, Localization of electrons and formation
    of two-dimensional Wigner spin lattices in a special cylindrical semiconductor
    stripe. Phys. Rev. B 82, 073307 (2010).
    [30] A. C. Mehta, C. J. Umrigar, J. S. Meyer and H. U. Baranger, Zigzag Phase Transition
    in Quantum Wires. Phys. Rev. Lett. 110, 246802 (2013).
    [31] G. Piacente, I. V. Schweigert, J. J. Betouras, and F. M. Peeters, Generic properties of a
    quasi-one-dimensional classical Wigner crystal. Phys. Rev. B 69, 045324 (2004).
    [32] G. Piacente, G. Q. Hai and F. M. Peeters, Continuous structural transitions in quasione-
    dimensional classical Wigner crystals. Phys. Rev. B 81, 024108 (2010).
    [33] A. D. Klironomos, J. S. Meyer and K. A. Matveev, Spontaneous spin polarization in
    quantum wires. Europhysics Letters 74, 679 (2006).
    [34] A. D. Klironomos, J. S. Meyer, T. Hikihara, and K. A. Matveev, Spin coupling in zigzag
    Wigner crystals. Phys. Rev. B 76, 075302 (2007).
    [35] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
    Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films.
    Science 306, 666 (2004).
    [36] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva,
    S. V. Dubonos and A. A. Firsov, Two-dimensional gas of massless Dirac
    fermions in graphene. Nature 438, 197 (2005).
    [37] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The
    electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
    [38] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, Philip Kim, Experimental Observation
    of Quantum Hall Effect and Berrys Phase in Graphene. Nature 438, 201 (2005).
    [39] A. F. Young and Philip Kim, Quantum interference and Klein tunnelling in graphene
    heterojunctions. Nat. Phys. 5, 222 (2009).
    [40] F. Guinea, M. I. Katsnelson and A. K. Geim, Energy gaps and a zero-field quantum
    Hall effect in graphene by strain engineering. Nat. Phys 6, 30 (2010).
    [41] S. Zhu, J. A. Stroscio, and T. Li Programmable Extreme Pseudomagnetic Fields in
    Graphene by a Uniaxial Stretch. Phys. Rev. Lett. 115, 245501 (2015).
    [42] R. Carrillo-Bastos, C. Leon, D. Faria, A. Latge, E. Y. Andrei, and N. Sandler, Strained
    fold-assisted transport in graphene systems. Phys. Rev. B 94, 125422 (2016).
    [43] M.A.H.Vozmediano, M.I.Katsnelson and F.Guinea Gauge fields in graphene. Phys.
    Rep. 496, 109 (2010).
    [44] B. Amorim, A. Cortijo, F. de Juan, A. G. Grushin, F. Guinea, A. Gutirrez-Rubio, H.
    Ochoa, V. Parente, R. Roldn, P. San-Jos, J. Schiefele, M. Sturla, and M. A. H. Vozmediano,
    Novel effects of strains in graphene and other two dimensional materials. Phys.
    Rep. 617, 1 (2016).
    [45] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro
    Neto, and M. F. Crommie, Strain-Induced PseudoMagnetic Fields Greater Than 300
    Tesla in Graphene Nanobubbles. Seience 329, 544 (2010).
    [46] W. Yan, W.-Y. He, Z.-D. Chu, M. Liu, L. Meng, R.-F. Dou, Y. Zhang, Z. Liu, J.-C.
    Nie and L. He, Strain and curvature induced evolution of electronic band structures in
    twisted graphene bilayer. Nat. Commun. 4, 2159 (2013).
    [47] S.-Y. Li, K.-K. Bai, L.-J. Yin, J.-B. Qiao, W.-X. Wang, and L. He, Observation of
    unconventional splitting of Landau levels in strained graphene. Phys. Rev. B 92, 245302
    (2015).
    [48] E. McCann and M. Koshino, The electronic properties of bilayer graphene. Rep. Prog.
    Phys. 76, 056503 (2013).
    [49] Taisuke Ohta, Aaron Bostwick, Thomas Seyller, Karsten Horn, Eli Rotenberg, Controlling
    the Electronic Structure of Bilayer Graphene. Science 313, 951 (2006).
    [50] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials
    and van der Waals heterostructures. Seience 353, 461 (2016).
    [51] B. Xu, H. Chakraborty, V. K. Yadav, Z. Zhang, M. L. Klein and S. Ren, Tunable twodimensional
    interfacial coupling in molecular heterostructures. Nat. Rev. Mat. 1, 16042
    (2016).
    [52] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G.
    L. Yu, Y. Cao, R. V. Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, M. I.
    Katsnelson, Yu. N. Gornostyrev, K.Watanabe, T. Taniguchi, C. Casiraghi, H-J. Gao, A.
    K. Geim and K. S. Novoselov, Commensurateincommensurate transition in graphene
    on hexagonal boron nitride. Nat. Phys. 10, 451 (2014).
    [53] Long Ju, Zhiwen Shi, Nityan Nair, Yinchuan Lv, Chenhao Jin, Jairo Velasco Jr, Claudia
    Ojeda-Aristizabal, Hans A. Bechtel, Michae C. Martin, Alex Zettl, James Analytis and
    FengWang, Topological valley transport at bilayer graphene domain walls. Nature 520,
    650 (2015).
    [54] Jing Li, Ke Wang, Kenton J. McFaul, Zachary Zern, Yafei Ren, Kenji Watanabe,
    Takashi Taniguchi, Zhenhua Qiao and Jun Zhu, Gate-controlled topological conducting
    channels in bilayer graphene. Nat. Nanotech. 11, 1060 (2016).
    [55] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. Ron
    Shen and F.Wang, Direct observation of a widely tunable bandgap in bilayer graphene.
    Nature 459, 820 (2009).
    [56] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G.
    L. Yu, Y. Cao, R. V. Gorbachev, A. V. Kretinin, J. Park, L. A. Ponomarenko, M. I.
    Katsnelson, Yu. N. Gornostyrev, K.Watanabe, T. Taniguchi, C. Casiraghi, H-J. Gao, A.
    K. Geim and K. S. Novoselov, Commensurateincommensurate transition in graphene
    on hexagonal boron nitride. Nat. Phys. 10, 451 (2014).
    [57] Yuan Cao, V. Fatemi1, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-
    Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature
    556, 43 (2018).
    [58] Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene
    superlattices. Nature 556, 8084 (2018).
    [59] M. Mucha-Kruczynski, I. L. Aleiner, and V.. Falko, Strained bilayer graphene: Band
    structure topology and Landau level spectrum. Phys. Rev. B 84, 041404(R) (2011).
    [60] W. Yan, W.-Y. He1, Z.-D. Chu, M. Liu, L. Meng, R.-F. Dou, Y. Zhang, Z. Liu, J.-C.
    Nie and L. He, Strain and curvature induced evolution of electronic band structures in
    twisted graphene bilayer. Nat. Commun. 4, 2159 (2013).
    [61] Hiroki Ikegami, Hikota Akimoto, David G. Rees, and Kimitoshi Kono, Evidence for
    Reentrant Melting in a Quasi-One-Dimensional Wigner Crystal. Phys. Rev. Lett. 109,
    236802 (2012).
    [62] David G. Rees, Niyaz R. Beysengulov, Juhn-Jong Lin, and Kimitoshi Kono, Stick-Slip
    Motion of the Wigner Solid on Liquid Helium. Phys. Rev. Lett. 116, 206801 (2016).
    [63] Di Xiao, Wang Yao, and Qian Niu, Valley-Contrasting Physics in Graphene: Magnetic
    Moment and Topological Transport. Phys. Rev. Lett. 99, 236809 (2007).
    [64] F. Pizzocchero, L. Gammelgaard, B. S. Jessen, J. M. Caridad, L. Wang, J. Hone, P.
    Boggild and T. J. Booth,The hot pick-up technique for batch assembly of van derWaals
    heterostructures Nat. Communs. 7, 11894 (2016).
    [65] P. Blake, E.W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth,
    and A. K. Geim, Making graphene visible . Appl. Phys. Lett. 91, 063124 (2007).
    [66] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and
    van der Waals heterostructures. Science 353, 461 (2016).
    [67] Hai Li, Jumiati Wu, Xiao Huang, Gang Lu, Jian Yang, Xin Lu, Qihua Xiong and Hua
    Zhang. Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets
    Using Optical Microscopy ACS Nano 7, 10344 (2013).
    [68] H. van Houten, C. W. J. Beenakker, J. G. Williamson, M. E. I. Broekaart, P. H. M. van
    Loosdrecht, B. J. vanWees, J. E.Mooij, C. T. Foxon, and J. J. Harris, Coherent electron
    focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B
    39, 8556 (1989).
    [69] R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Detecting Spin-Polarized
    Currents in Ballistic Nanostructures. Phys. Rev. Lett. 89, 266602 (2002).
    [70] J. A. Folk, R. M. Potok, C. M. Marcus and V. Umansky, and Kimitoshi Kono, A
    Gate-Controlled Bidirectional Spin Filter Using Quantum Coherence. Science 299, 679
    (2003).
    [71] T.-M. Chen, M. Pepper, I. Farrer, G. A. C. Jones, and D. A. Ritchie, All-Electrical
    Injection and Detection of a Spin-Polarized Current Using 1D Conductors. Phys. Rev.
    Lett. 109, 177202 (2012).
    [72] T.-M. Chen, A. C. Graham, M. Pepper, I. Farrer, and D. A. Ritchie, Bias-controlled
    spin polarization in quantum wires. Appl. Phys. Lett. 93, 032102 (2008).
    [73] T.-M. Chen, A. C. Graham, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and
    D. A. Ritchie, Direct observation of nonequilibrium spin population in quasi-onedimensional
    nanostructures. Nano Lett. 10, 2330 (2010).
    [74] J. Jang, B. M. Hunt, L. N. Pfeiffer, K.W.West and R. C. Ashoori, Sharp tunnelling resonance
    from the vibrations of an electronic Wigner crystal. Nat. Phys. 13, 340 (2016).
    [75] H. Deng, Y. Liu, I. Jo, L.N. Pfeiffer, K.W. West, K.W. Baldwin, and M. Shayegan,
    Commensurability Oscillations of Composite Fermions Induced by the Periodic Potential
    of a Wigner Crystal. Phys. Rev. Lett. 117, 096601 (2016).
    [76] Y. P. Chen, G. Sambandamurthy, Z. H. Wang, R. M. Lewis, L. W. Engel, D. C. Tsui, P.
    D. Ye, L. N. Pfeiffer and K. W. West, Melting of a 2D quantum electron solid in high
    magnetic field. Nat. Phys. 2, 452 (2006).
    [77] Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. Anderson,
    D. A. Ritchie, T. W. Silk, and A. J. Schofield, Probing Spin-Charge Separation in a
    Tomonaga-Luttinger Liquid. Science 325, 597 (2009).
    [78] D. Laroche, G. Gervais, M. P. Lilly, and J. L. Reno, 1D-1D Coulomb Drag Signature
    of a Luttinger Liquid. Science 343, 631 (2014).
    [79] E. H. Hall, On a new action of the magnet on electric currents. American Journal of
    Mathematics 2, 287 (1879).
    [80] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald and N. P. Ong, Anomalous
    Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
    [81] Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Observation of the spin
    Hall effect semiconductors. Science 306, 1910 (2004).
    [82] M. Konig, S.Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi
    and S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells. American
    Journal of Mathematics 318, 766 (2007).
    [83] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei,
    L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K.
    He, Y. Wang, L. Lu, X.-C. Ma, Q.-K. Xue, Experimental observation of the quantum
    anomalous Hall effect in a magnetic topological insulator. Science 340, 167 (2013).
    [84] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance
    in a Two-Dimensional Periodic Potential. Phys. Rev. Lett 49, 405 (1982).
    [85] Zhang, Y., Brink, J. V. D., Felser, C. & Yan, B. (2018). Electrically tuneable nonlinear
    anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and
    MoTe2. arXiv:1804.11069 (2018).
    [86] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2
    transistors. Science 344, 1489 (2014).
    [87] Buttiker, M. Symmetry of electrical conduction. IBM J. Res. Develop. 32 317-334
    (1988).
    [88] Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H.
    Yamada, M. Kawasak, Y. Tokura, and K. Terakura The Anomalous Hall Effect and
    Magnetic Monopoles in Momentum Space. Science 302, 92-95 (2003).
    [89] K. Lee, B. Fallahazad, J. Xue, D. C. Dillen, K. Kim, T. Taniguchi, K. Watanabe, and
    E. Tutuc, Chemical potential and quantum Hall ferromagnetism in bilayer graphene.
    Science 345, 58-61 (2014).
    [90] Inti Sodemann and Liang Fu, Quantum Nonlinear Hall Effect Induced by Berry Curvature
    Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett 115, 216806 (2015).

    下載圖示 校內:2024-01-18公開
    校外:2024-01-18公開
    QR CODE