簡易檢索 / 詳目顯示

研究生: 簡聿政
Chien, Yu-Cheng
論文名稱: 具分合流道與雙T形接頭的微混合器
Micromixers with double T-junction and split-and-recombine sub-channels
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 混合分合流道雙T形接頭粒子反向追跡捲入流動
外文關鍵詞: mixing, split-and-recombine sub-channels, double T-junction, particle tracking, engulfment flow
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一新型的微混合器,並使用數值方法模擬微混合器中的混合情況。新型微混合器的第一階段類似於原始T形微混合器,兩個不同的流體進入第一混合流道而產生第一次的匯流混合,離開第一混合流道後,混合流體分離成兩個流 (之後的第二階段和第一階段相連);兩個流都轉了一個直角彎進入次流道,其中一個流經過兩個順時針的直角彎,另一個流經過兩個逆時針直角彎,然後,兩個流匯流在第二個T形接頭並流入第二個主混合流道。為了提升本微混合器的混合,在高雷諾數下的T形接頭中引發流動捲入現象是必要的,然而在電腦可應付網格尺寸的網格法模擬中,由於高雷諾數下的數值擴散的關係,所以難以得到精確的結果,因此我們使用結合粒子反向追跡與擴散模式的解法和反向隨機漫步蒙地卡羅追跡法來模擬流體混合,兩種模擬在本文中的結果顯示能有很好的一致性。本文研究發現,在高雷諾數下,兩個T形接頭產生的捲入流動提升了混合效果,而分合流道和當中的直角彎道在捲入發生時,也能有助於混合。我們進一步模擬不同主流道長度的微混合器時,可發現在高雷諾數下,當雷諾數升高後,第一主混合流道必須相對應的加長才能產生較好的混合效率。最後,本微混合器與只有一個筆直的主混合流道的原始T形微混合器相比,可發現更能得到較好的混合效率。

    A novel micromixer is proposed and fluid mixing in the mixer is investigated numerically. The first stage of the proposed mixer is similar to the original T-shaped micromixers. Two different fluids entering the two inlets have the first confluence at the beginning of the first main mixing channel. At the end of the first main mixing channel, it is connected to the second stage, where the mixing fluid splits into two streams; each of them takes a 90-degree turn into a sub-channel. While one of the stream flows through two clockwise 90-degree bends, the other stream flows through two counterclockwise 90-degree bends. Then, the two streams recombine at the second T-junction and flow into the second main mixing channel. Inducing flow engulfment at high Reynolds number (Re) in the T-junction is necessary for the enhancement of fluid mixing in the present micromixers. However, an ordinary grid-based simulation is hard to generate accurate solutions for fluid mixing with affordable mesh sizes because of the numerical diffusion at high Re. Therefore, a particle tracking method with the diffusion model and a backward random-walk Monte Carlo simulation are applied to the present cases to circumvent numerical diffusion. The results obtained by the two methods show that they are in good agreement. As expected, at high Re, higher mixing performance occurs due to the engulfment flows in the two T-juctions. Moreover, the effect of split-and-recombine sub-channels and 90-degree bends also contribute to the mixing performance at high Re. From further investigation of the different lengths of the two main mixing channels, it is found that the micromixer at higher Re should go with the longer first main mixing channel to generate better mixing performance. The proposed micromixer generates much greater mixing efficiency than the original T-shaped micromixer with only one straight main mixing channel does.

    摘要……… i Extended Abstract ii 誌謝……… xiii 目錄……… xiv 表目錄…… xvii 圖目錄…… xviii 符號表…… xxv 第一章 緒論 1 1-1 研究背景與文獻回顧 1 1-2 研究動機 4 1-3 研究方法 4 1-4 本文架構 5 第二章 流道設計與數值理論 6 2-1 微混合器之設計 6 2-2 基本假設 6 2-3 統御方程式 7 2-4 邊界條件 8 2-5 無因次化 9 2-5-1 統御方程式之無因次化 9 2-5-2 邊界條件之無因次化 10 2-6 網格法數值模擬 11 2-6-1 CFD-GEOM建立流道幾何外形與網格 11 2-6-2 CFD-ACE+模擬運算 11 2-6-3 CFD-VIEW後處理 12 2-7 結合粒子反向追跡與擴散模式的解法 12 2-7-1 粒子反向追跡 13 2-7-2 流體粒子之速度內插 14 2-7-3 目標截面之擴散模式 16 2-8反向隨機漫步(蒙地卡羅)追跡 21 2-9 混合度 22 2-9-1 一般平均濃度計算 23 2-9-2 體濃度計算 23 2-9-3 混合度計算 24 第三章 結果與討論 25 3-1 不同混合度計算方法的結果比較 25 3-1-1 兩種混合度計算方法比較 25 3-1-2 兩流體分別在分合流道中不同的質量流率 25 3-2 三種模擬方法在雙T型微混合器之測試 26 3-2-1 網格法之測試 26 3-2-2結合粒子反向追跡與擴散模式的解法之測試 27 3-2-3蒙地卡羅法之測試 28 3-2-4三種模擬方法之比較 28 3-3雙T型微混合器的匯流捲入與雷諾數的關係 29 3-3-1 產生第一次匯流捲入的臨界雷諾數 29 3-3-2 產生第二次匯流捲入的臨界雷諾數 30 3-4 主流道長度的影響 30 3-5 本混合器流道各部分形狀的影響 31 3-5-1 T形接頭之匯流捲入的影響 31 3-5-2 分合流道的影響 32 3-6雙T形微混合器與原始T形微混合器的比較 32 第四章 結論 34 參考文獻… 35

    [1] N.-T. Nguyen and Z. Wu, “Micromixers—a review,” Journal of Micromechanics and Microengineering, vol. 15, R1-R16, 2005.
    [2] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical,
    vol. 1, pp. 244-248, 1990.
    [3] J. Liu, Y. Chu, X. Cao, Y. Zhao, H. Xie, and S. Xue, “Rapid transesterification of micro-amount of lipids from microalgae via a micro-mixer reactor,” Biotechnol Biofuels, vol. 8, pp. 229-236, 2015.
    [4] C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: A Review,”International Journal of Molecular Sciences, vol. 12, pp. 3263-3287, 2011.
    [5] L. Capretto, W. Cheng, M. Hill, and X. Zhang, “Micromixing within microfluidic devices,” Microfluidics: Technologies and Applications, vol. 304, pp. 27-68, 2011.
    [6] S. H. Wong, M. C. L. Ward, and C. W. Wharton, “ Micro T-mixer as a rapid mixing micromixer,” Sensors and Actuators B: Chemical, vol. 100, pp. 359-379, 2004.
    [7] J. T. Yang, W. F. Fang, and K. Y. Tung, “Fluids mixing in devices with connected-groove channels,” Chemical Engineering Science, vol. 63, pp. 1871-1881, 2008.
    [8] J. M. Park, K. D. Seo, and T. H. Kwon, “A chaotic micromixer using obstruction-pairs,” Journal of Micromechanics and Microengineering, vol. 20, 015023 (11 pages), 2010.
    [9] Z. Wen, X. Yu, S.-T. Tu, J. Yan, and E. Dahlquist, “Intensification of biodiesel synthesis using zigzag micro-channel reactors,” Bioresource Technology, vol. 100, pp. 3054-3060, 2009.

    [10] T. T. Veenstra, T. S. J. Lammerink, M. C. Elwenspoek, and A. van den Berg, “Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems,” Journal of Micromechanics and Microengineering, vol. 9, pp. 199-202, 1999.
    [11] S. H. Wong, P. Bryant, M. Ward, and C. Wharton, “Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies,” Sensors and Actuators B, vol. 95, pp. 414-424, 2003.
    [12] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels ,” Science, vol. 295, pp. 647-651, 2002.
    [13] D. J. Beebe, R. J. Adrian, M. G. Olsen, M. A. Stremler, H. Aref, and B. H. Jo, “Passive mixing in microchannels: fabrication and flow experiments,” Mécanique and Industries, vol. 2, pp. 343-348, 2001.
    [14] D. Bothe, A. Lojewski, and H. J. Warnecke, “Computational analysis of an instantaneous chemical reaction in a T-microreactor,” AIChE Journal, vol. 56, pp. 1406-1415, 2010.
    [15] D. Gobby, P. Angeli, and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, vol. 11, pp. 126-132, 2001.
    [16] N. Kockmann, C. Föll, and P. Woias, “Flow regimes and mass transfer
    characteristics in static micro mixers,” Proceedings of SPIE, vol. 4982, pp. 319-329, 2003.
    [17] D. Bothe, C. Stemich, and H.-J. Warnecke, “Fluid mixing in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 61, pp. 2950-2958, 2006.
    [18] A. Soleymani, H. Yousefi, and I. Turunena, “Dimensionless number for identification of flow patterns inside a T-micromixer,” Chemical Engineering Science, vol. 63, pp. 5291-5297, 2008.
    [19] C. Galletti, M. Roudgar, E. Brunazzi, and R. Mauri, “Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 63, pp. 5291-5297, 2008.
    [20] M. Roudgar, E. Brunazzi, C. Galletti, and R. Mauri, “Numerical Study of Split T‐Micromixers,” Chemical Engineering and Technology, vol. 35, pp. 1291-1299, 2012.
    [21] T. Matsunaga and K. Nishino, “Swirl-inducing inlet for passive micromixers,” Royal Society of Chemistry Advances, vol. 4, pp. 824-829, 2014.
    [22] W. R. Dean, “Note on the motion of a fluid in a curved pipe,” Philosophical Magazine, vol. 4, pp. 208-223, 1927.
    [23] A. Yu. Gelfgat, A. L. Yarin, and P. Z. Bar-Yoseph, “Dean vortices-induced enhancement of mass transfer through an interface separating two immiscible liquids,” Physics of Fluids, vol. 15, pp. 330, 2003.
    [24] N. Kockmann, M. Engler, D. Haller, and P. Woias, “Fluid dynamics and transfer processes in bended microchannels,” Heat Transfer Engineering, vol. 26, pp. 71-78, 2005.
    [25] N. Aoki, R. Umei, A. Yoshida, and K. Mae, “Design method for micromixers considering influence of channel confluence and bend on diffusion length,” Chemical Engineering Journal, vol. 167, pp. 643-650, 2011.
    [26] N. Kockmann, T. Kiefer, M. Engler, and P. Woias, “Convective mixing and chemical reactions in microchannels with high flow rates,” Sensors and Actuators B: Chemical, vol. 117, pp. 495-508, 2006.

    [27] N. Schwesinger, T. Frank, and H. Wurmus, “A modular microfluid system with an integrated micromixer,” Journal of Micromechanics and Microengineering, vol. 6, pp. 99-102, 1996.
    [28] C. K. Chung and T. R. Shih, “Effect of geometry on fluid mixing of the rhombic micromixers,” Microfluidics and Nanofluidics, vol. 4, pp. 419-425, 2007.
    [29] A. Afzal and K.-Y. Kim, “Passive split and recombination micromixer with convergent–divergent walls,” Chemical Engineering Journal, vol. 203, pp. 182-192, 2012.
    [30] M. A. Ansari and K.-Y. Kim, “Mixing performance of unbalanced split and recombine micomixers with circular and rhombic sub-channels,” Chemical Engineering Journal, vol. 162, pp. 760-767, 2010.
    [31] T. S. Sheu, S. J. Chen, and J. J. Chen, “Mixing of a split and recombine micromixer with tapered curved microchannels,” Chemical Engineering Science,” vol. 71, pp. 321-332, 2012.
    [32] M. Nimafar, V. Viktorov, and M. Martinelli, “Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels,” Chemical Engineering Science, vol. 76, pp. 37-44, 2012.
    [33] T. Matsunaga1, K. Shibata1, K. Murotani1, and S. Koshizuka1, “Hybrid grid-particle method for fluid mixing simulation,” Computational Particle Mechanics, vol. 2, pp. 233-246, 2015.
    [34] T. Matsunaga, H. J. Lee, and K. Nishino, “An approach for accurate simulation of liquid mixing in a T-shape micromixer,” Lab on a Chip, vol. 13, pp. 1515-1521, 2013.
    [35] V. Özceyhan and M. Sen, “Particle-tracking random-walk computation of high- Peclet-number convection,” Numerical Heat Transfer, part A, vol. 50, pp. 607-622, 2006.
    [36] A. Vikhansky, “Quantification of reactive mixing in laminar microflows,” Physics of Fluids, vol. 16, pp. 4738-4741, 2004.
    [37] A. Nealen, “An as-short-as-possible introduction to the least squares,weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Computer Methods in Applied Mechanics and Engineering, vol. 130, 150 (3 pages), 2004.
    [38] J. L. Bentley, “Multidimensional binary search trees used for associative Searching,”
    Communications of the Association for Computing Machinery, vol. 18, pp. 509-517, 1975.
    [39] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the Association for Computing Machinery, vol. 45, pp. 891-923, 1998.
    [40] T. Most and C. Bucher, “A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, pp. 315-332, 2005.
    [41] M. F. Modest, “Radiative heat transfer,” Academic Press, New York, 3rd edition, 2013.
    [42] P. V. Danckwerts, “The definition and measurement of some characteristics of mixtures,” Applied Scientific Research, section A, vol. 3, pp. 279-296, 1952.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE