簡易檢索 / 詳目顯示

研究生: 陳映璉
Chen, Ying-Lien
論文名稱: 鑭摻雜鈦酸鍶之粉末製備、燒結行為及其塊材熱電性質之研究
Powder preparation, sintering behavior and thermoelectric properties of La-doped strontium titanate
指導教授: 黃啟祥
Hwang, Chii-Shying
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 103
中文關鍵詞: 熱電材料鈦酸鍶水熱法
外文關鍵詞: Thermoelectric material, SrTiO3, Hydrothermal method
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新能源的開發及節能減碳,例如:燃料電池、生質酒精、太陽能及能源轉換等,已經成為現今人類發展的重要議題。熱電材料即為一受到期待的能源轉換方式的材料,熱電材料在溫差發電及熱電致冷方面都具有廣泛的應用價值,其中陶瓷熱電材料具有成本低廉、無毒、無污染等之優點,是深受期待的材料。陶瓷材料中之鈦酸鍶是功能性非常多元的材料,具有介電常數高、介電損耗低、熱穩定性好等之優點,是被期待的熱電材料之一。
    本研究旨在製備奈米級鑭摻雜鈦酸鍶粉末,並探討其燒結及熱電性質,以及鑭釔共摻雜對鈦酸鍶燒結之影響。研究結果顯示以水熱法製備之鈦酸鍶粉末,於120℃、6小時即可合成含鑭釔之SrTiO3粉體,其粉體大小約為30 nm。鑭摻雜鈦酸鍶粉體經成形後以1050 ℃於Ar-5 % H2還原氣氛下燒結0.5 h-2 h所成之塊材,其相對密度皆高於90 %。燒結時間為0.5 h, 1 h及2 h 之塊材其晶粒大小分別為100 nm, 350 nm及500 nm。以1200 ℃於Ar-5 % H2還原氣氛下燒結所成之鑭釔共摻雜之鈦酸鍶塊材,其相對密度皆高於85%。
    在鑭摻雜鈦酸鍶塊材的熱電性質方面,1050 ℃燒結0.5 h 之Sr0.94La0.06TiO3塊材有最高的電傳導係數,在400 ℃時其值為159 μS/cm;燒結0.5 h之Sr0.94La0.06TiO3塊材亦擁有最高的Seebeck係數值,於400 ℃時其值為 -380.09 μV/K;最大功率因子於400 ℃時其值為23.03×(10)^(-4) μw⁄(mK^2 );最小之熱傳導係數為燒結0.5 h者,於量測溫度300 ℃時其值為3.56 W/mK;最高之熱電優值為燒結1 h 之試樣於量測溫度300 ℃時,其值為5.62×(10)^(-8)。
    鑭釔共摻雜鈦酸鍶塊材的熱電性質方面,6 % La-2 % Y 摻雜之試樣在量測溫度350 ℃時有最高的電傳導係數,其值為0.104 S/cm;6 % La- 4 % Y摻雜之試樣有有最高的Seebeck係數值,於400 ℃時其值為-295.56 μV/K;最大功率因子為6 % La-2 % Y之試樣於量測溫度400 ℃時其值為0.594 μw⁄(mK^2 );最小之熱傳導係數為6 % La-4 % Y摻雜者,於量測溫度300 ℃時其值為0.526 W/mK;最高之熱電優值為6 % La-4 % Y摻雜之試樣於量測溫度300 ℃時,其值為3.89×(10)^(-4)。

    La and Y-doped SrTiO3 nano powders were synthesized by hydrothermal method. To get nano-scale grain size and high density bulks, La-doped SrTiO3 were sintered at 1050 ℃ for 0.5-2 h and La, Y-codoped SrTiO3 were sintered at 1200 ℃ in Ar-5% H2 for 1 h. Both temperatures are much lower than 1400 ℃ of conventional SrTiO3 powders. Due to the smaller particle and lower sintering temperature, the grain size is much smaller and so that we can observe the relationship between grain size and thermoelectric properties. Furthermore, small particles also contributed to more dense bulk at lower sintering temperature. La-doped SrTiO3 bulk has the relative density of about 90 % and La, Y codoping SrTiO3 bulk had the relative density of 89.7 %. The grain sizes of La-doped SrTiO3 increased as sintering time increased. The grain size of 100 nm, 350 nm and 500 nm were obtained for the bulk sintered at 1050 ℃ for 0.5-2 h. An enhanced Seebeck coefficient was observed and attributed to the nano grain size; electrical conductivity was enhanced by doping level. Nanostructure also changes the conductive behavior because of enlargement the energy gap. The nanostructured bulk of La-doped SrTiO3 exhibited a maximum power factor of ~ 23×(10)^(-4) μW⁄(mK^2 ) at 400 ℃. 6 % La-2 % Y showed the highest power factor of 0.594 μW/mK2.

    中文摘要 I Abstract III 誌謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 相關文獻回顧及整理 5 2-1 基本熱電效應 5 2-1-1 熱電效應 5 2-1-2 熱電性質與能源轉換效率 7 2-1-3 提升熱電性質之方法 8 2-2 熱電效應的發展與應用 11 2-3 熱電材料的種類 14 2-4 熱電材料的製備方法 17 2-4-1 熔煉法 17 2-4-2 粉末冶金法 18 2-5 鈦酸鍶相關背景及研究動態 19 2-5-1 鈦酸鍶材料的常見製備方法 20 2-5-2 鈦酸鍶燒結性之相關研究 23 2-5-3 鈦酸鍶材料之熱電相關研究 27 第三章 實驗方法與步驟 48 3-1 實驗用藥品及原料 48 3-2 實驗流程 49 3-3 材料性質之分析 49 3-3-1 熱機械分析 (TMA) 49 3-3-2 結晶相鑑定 50 3-3-3 燒結體密度之量測 50 3-3-4 顯微結構之分析 50 3-4 燒結體熱電性質之分析 51 3-4-1 導電性量測 51 3-4-2 Seebeck係數之量測 51 第四章 結果與討論 55 4-1 水熱法對合成粉體之影響 55 4-1-1 水熱填充容積比對合成鈦酸鍶粉體之影響 55 4-1-2 水熱溫度對合成鈦酸鍶粉體之影響 55 4-1-3 水熱持溫時間對合成鈦酸鍶粉體之影響 56 4-2 鑭摻雜鈦酸鍶塊材之燒結性 60 4-2-1 鑭摻雜鈦酸鍶塊材之熱膨脹收縮分析 60 4-2-2 鑭摻雜鈦酸鍶塊材之顯微結構分析 65 4-2-3 鑭摻雜鈦酸鍶塊材之相鑑定 67 4-3 鑭摻雜鈦酸鍶塊材之熱電性質 69 4-3-1 鑭摻雜鈦酸鍶塊材之Seebeck 係數 69 4-3-2 鑭摻雜鈦酸鍶塊材之電傳導係數 70 4-3-3 鑭摻雜鈦酸鍶塊材之功率因子 70 4-3-4 鑭摻雜鈦酸鍶塊材之熱傳導係數 71 4-3-5 鑭摻雜鈦酸鍶塊材之熱電優值 72 4-3-6 晶粒大小對熱電性質之影響 72 4-4 鑭釔共摻雜鈦酸鍶之燒結性 79 4-4-1 鑭釔共摻雜鈦酸鍶粉末相鑑定 79 4-4-2 鑭釔共摻鈦酸鍶塊材之熱膨脹收縮分析 82 4-4-3 鑭釔共摻鈦酸鍶塊材之相鑑定 87 4-4-4 鑭釔共摻鈦酸鍶塊材之顯微結構 87 4-5 鑭釔共摻雜鈦酸鍶塊材之熱電性質 90 4-5-1 鑭釔共摻雜鈦酸鍶塊材之Seebeck 係數 90 4-5-2 鑭釔共摻雜鈦酸鍶塊材之電傳導係數 90 4-5-3 鑭釔共摻雜鈦酸鍶塊材之功率因子 91 4-5-4 鑭釔共摻雜鈦酸鍶塊材之熱傳導係數 92 4-5-5 鑭釔共摻雜鈦酸鍶塊材之熱電優值 92 第五章 結論 97 參考文獻 99

    [1] A. Australia, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Denmark, Estonia, European Community, Finland, France, Germany, Greece, Hungary. Iceland, Ireland, Italy, Japan, Latvia, Liechtenstein, Lithuania, Luxembourg, Monaco, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom of Great Britain and Northern Ireland, United States of America, Kyoto Protocol, (1997).
    [2] D.M.R. H. J. Goldsmid, and B. Raton, CRC Handbook of Thermoelectrics, (1995) 53.
    [3] S.K. H. Ohta, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nature Material, 6 (2007) 129.
    [4] P.J.T. T. C. Harman, M. P. Walsh, and B. E. LaForge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, 297 (2002) 2220.
    [5] M.S.J. C. H. Kuo, J. R. Ku, S. K. Wu, Y. W. Chou, and C. S. Hwang, Thermoelectric Properties of Fine-Grained PbTe Bulk Materials Fabricated by Cryomilling and Spark Plasma Sintering, J. Electron. Mater, online (2009).
    [6] A.G. R. Moos, K.H. Hrdtl, Thermoelectric properties of non-doped and Y-doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing, J. Appl. Phys, 78 (1995) 5042.
    [7] L.K. S. Hashimoto, F.W. Poulsen, M. Mogensen, Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature, Alloys. Compd, 397 (2005) 245.
    [8] A.Y. H. Obara, C.H. Lee, K. Kobayashi, A. Matsumoto, R. Funahashi, Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3, Jpn. J. Appl. Phys, 43 (2004) L540.
    [9] F.S. P.K. Gallagher, F.V. Dimarcello, Preparation of semiconducting titanates by chemical methods, J. Am. Ceram. Soc, 46 (1963) 359.
    [10] X.J. D. Chen, M. Zhang, Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors, J. Eur. Ceram. Soc., 20 (2000) 1261.
    [11] N.O. A. Kikuchi, and T. Akiyamab, A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering, Scripta materials, 63 (2010) 407.
    [12] S.B. Y. Mao, S. S. Wong, Hydrothermal synthesis of perovskite nanotubes, Chem. Commun., (2003) 408.
    [13] K.M.H. W. D. Yang, Optimization of the experimental conditions for the preparation of a thin strontium titanate film by hydrothermal process, J. Mater. Sci., 37 (2002) 1337.
    [14] J.L. S. Zhang, Y. Han, B. Chen, X. Li, Mater. Sci., Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions, Mat. Sci and Eng: B, 110 (2004) 11.
    [15] M.Y. M. Kakihana, H. Mazaki, H. Yasuoka, L. Borjesson, Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility, J. Appl. Phys., 71 (1992) 3904.
    [16] F.C. P. Duran, J. Tartaj, C. Moure, Low-temperature fully dense and electrical properties of doped-ZnO varistors by a polymerized complex method, J. Eur. Ceram. Soc., 22 (2002) 67.
    [17] T.N. M. Ito, D. Furumoto, S. Katsuyama, H. Nagai, Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method, Scripta Mater., 48 (2003) 403.
    [18] K.K. Hiroaki Muta , Shinsuke Yamanaka, Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3, J. Alloy. Compd., 392 (2005) 306.
    [19] M. Nygren, SPS Processing of Nano-Structured Ceramics, J. Iron and Steel Research, International (2007) 99.
    [20] K.N. T. Okuda, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3, Phys. Rev. B, 63 (2001) 1-4.
    [21] T.N. S. Ohta, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, Appl. Phys., Lett 87 (2005) 092108-092101.
    [22] B.-P.Z. PENG-PENG SHANG, YONG LIU,JING-FENG LI and HONG-MIN ZHU, Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics, Journal of electronic materials, (2011) 926.
    [23] K.K. H. Muta, S. Yamanaka, Thermoelectric properties of rare earth doped SrTiO3, J. Alloy. Compd., 350 (2003) 292.
    [24] K.K. H. Muta, S. Yamanaka., Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3, J. Alloys Compd., 392 (2003) 306.
    [25] R. Richman, Prospects for efficient thermoelectric materials in the near term, DARPA/DOE High Efficient Thermoelectric. , San Diego, CA (2002).
    [26] T.T. Inc., Frequently asked questions on thermoelectrics., online, http://www.tetech.com/techinfo/#faqs (2005).
    [27] D.M. Rowe, Thermoelectrics Handbook: Micro to Nano, CRC Press, (2006).
    [28] K.K.a.T. Koyanagi, J. Appl. Phys., 92 (2002) 2544.
    [29] M.T.a.T.K. K. Kishimoto, J. Appl. Phys., 92 (2002) 5331.
    [30] K.Y.a.T.K. K. Kishimoto, Jpn. J. Appl. Phys, 42 (2003) 301.
    [31] C.W.N.a.R. Birringer, Phys. Rev. B, 57 (1998) 8264.
    [32] P.J.T. T. C. Harman, M. P. Walsh and B. E. LaForge, Science, 297 (2002) 2229.
    [33] E.S. R. Venkatasubramanian, T. Colpitts, B. O'Quinn, Nature, 413 (2001) 597.
    [34] Y.M.L.a.M.S. Desselhaus, Phys. Rev. B, 68 (2003) 075304.
    [35] F. Stabler, Automotive applications for high efficiency thermoelectrics, DARPA/DOE High Efficient Thermoelectric Workshop, (2002).
    [36] a.X.M. S. B. Riffat, Thermo-electrics: A review of present and potential applications Applied Thermal Engineering, Applied Thermal Engineering, 23 (2003) 913.
    [37] a.H.J.G. G. S. Nolas, A comparison of projected thermoelectric and thermionic refrigerators, J. Appl. Phys., (1999) 4066.
    [38] O.V.M.n. N. F. Fedorov, V. A. Saltykova, and M. V. Chistyakova, Zh. Neorg. Khim Russ., J. Inorg. Chem., 24 (1979) 649.
    [39] S.R. Murchison, Hydrothermal Reactions for Materials Science and Engineering, Elsevier Applied Science, London (1989).
    [40] J.B. Hannay, On the Artificial Formation of the Diamond, Proc. Royal Soc. London, 30 (1880) 178.
    [41] M.Y. K. Byrappa, Handbook of Hydrothermal Technology, (2001).
    [42] C.C.H.-H. James O. Eckert Jr., Bonnie L. Gersten, Malgorzata M. Lencka, andRichard E. Riman, Kinetics and Mechanism of Hydrothermal Synethesis of Barium Titanate, J. Am. Ceram. Soc, 79 (1996) 2929.
    [43] W. Zhu, Wang, C. C., Akbar, S. A., and Asiale, R., Fast-sintering of Hydrothermally Synthesized BaTiO3 Powders and their Dielectric Properties, J. Mater. Sci., 32 (1997) 4303.
    [44] G.H. Zheng, Dai, Z. X., Li, H. B., Wang, H. Q., Li, Y. Q., Xu, X. F., Huang, B. T., Ma, Y. Q., Li, G., Improving the Thermoelectric Properties of Sr0.9La0.1TiO3 by Ag Addition, Journal of Low Temperature Physics, 174 (2013) 128.
    [45] J. Luo, P.A. Maggard, Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3, Advanced Materials, 18 (2006) 514.
    [46] R.D. Akita, Qiang Yin, Shu Sato, Tsugio, Microwave-Assisted Hydrothermal Synthesis and Photocatalytic Properties of Cr and La-Codoped SrTiO3 Photocatalyst, Key Engineering Materials, 608 (2014) 147.
    [47] S. Somiya, Ed., Hydrothermal Reactions for Material Science and Engineering: An Overview of Research in Japan, Elsevier Applied Science, London (1989) 505.
    [48] S.-L.F. Syh-Yuh Cheng, Chung-Chuang Wei, Sintering of SrTiO3 with Li2O3 addition, Ceramic International, 15 (1989) 231.
    [49] N.K. Okuta. T, Miyasaka. S, Tokura. Y, Large thermoelectric response of metallic perovskites : Sr1-xLaxTiO3 (0<=x<=0.1), Physical Review B, 63 (2001) 114103.
    [50] N.L. Kuo-Shung Liu, Enhanced densification of SrTiO3 perovskite ceramics, Applications of Ferroelectrics, (1991) 261.
    [51] P.F.J. S.G. CHO, Evolution of the microstructure of undoped and Nb-doped SrTiO3, J. Mater. Sci., 29 (1994) 4866.
    [52] S.B.M. Q. X. Fu, E. Wessel, F. Tietz, J. Eu., Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, J. ECS., 28 (2008) 811.
    [53] H.Z. Feng Gao, Xue Li, Yunfei Cheng, Xiong Zhou, Fenge Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency, J. Power Sources, 185 (2008) 26.
    [54] A.M.R.S. Lui ´s Amaral, Paula M. Vila rinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics, Material Research Bulletin, 44 (2009) 263.
    [55] J.K.T. Chandy N. George, R. Jose, H. Padma Kumar, M.K. Suresh, V. Ratheesh Kumar, P.R. Shobana Wariar, J. Koshy, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, J. Alloys. Compd., 486 (2009) 711.
    [56] V.P. Karel Maca, Zhijian Shen, Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics, Intergrated Ferroelectrics, 99 (2010) 114.
    [57] T.T. Lihua Zhang, Noriyuki Okinaka, Tomohiro Akiyama, Thermoelectric properties of combustion-synthesized Lanthanum-doped strontium titanate, Mater. Transactions, 48 (2007) 1079.
    [58] H. Ohta, Thermoelectrics based on strontium titanate, Mater. Today, 10 (2007) 44.
    [59] T.T. Lihua Zhang, Noriyuki Okinaka, Tomohiro Akiyama, Thermoelectric properties of combustion synthesis and spark plasma sintered Sr1-xRxTiO3 (R = Y, La, Sm, Gd, Dy, 0 < x ≤ 1), Mater. Transactions, 48 (2007) 2088.
    [60] H.H. Ning Wang, Xiao Li, Li Han, Chunqiu Zhang, Enhanced thermoelectric properties of Nb-doped SrTiO3 polycrystalline ceramic by titanate nanotube addition, J. Alloys. Compd., 506 (2010) 293.
    [61] C.L.W. Hong Chao Wang, Wen Bin Su, Jian Liu, Yi Sun, Hua Peng, and Liang Mo Mei, Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3, J. Am. Ceram. Soc., 94 (2011) 838.
    [62] M.I.a.N. Hasegawa, Thermoelectric properties and desification behavior of SrTiO3/TiB2 composites, Material Science Forum Vols., 706-709 (2012) 1909.
    [63] Z.H.Y. G.H. Zheng, Z.X. Dai, H.Q. Wang, H.B. Li, Y.Q. Ma, G. Li Improvement of the Thermoelectric Properties of (Sr0.9La0.1)3Ti2O7 by Ag Addition, J. Low Temp. Phys., 173 (2013) 80.
    [64] L.L. Li, Yongfei Qin, Xiaoying Li, Di Zhang, Jian Song, Chunjun Wang, Ling, Enhanced thermoelectric performance of highly dense and fine-grained (Sr1−xGdx)TiO3−δ ceramics synthesized by sol–gel process and spark plasma sintering, Journal of Alloys and Compounds, 588 (2014) 562.
    [65] S.P. A. V. Kovalevsky, S. G. Patrício, P. Thiel, M. C. Ferro, D. P. Fagg, J. R. Frade, and A. Weidenkaf, Design of SrTiO3‑Based Thermoelectrics by Tungsten Substitution, J. Phys. Chem. C, 119 (2015) 4466.
    [66] http://zh.wikipedia.org/zh-tw/%E9%92%9B%E9%85%B8%E9%94%B6, online.
    [67] http://www.chemguide.co.uk/atoms/properties/atradius.html, online.
    [68] J.S.S. K. S. Park, S. I. Woo, K. S. Shin, M. W. Oh, S. D. Park, T. H. Hyeon, Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticals, J. Mater. Chem. A, 2 (2014) 4217.
    [69] A.V.Y. Kovalevsky, A. A. Populoh, S. Weidenkaff, A. Frade, J. R., Effect of A-Site Cation Deficiency on the Thermoelectric Performance of Donor-Substituted Strontium Titanate, The Journal of Physical Chemistry C, 118 (2014) 4596.
    [70] P. H. Michael Bottger, Gregory S. Pomrehn, G. Jeffrey Snyder, and Terje G. Finstad, Phys. Status Solidi A 208 (2011) 2753.
    [71] R. Kubo, Statistical-mechanical theory of irreversible processes. I., Journal of the physical society of japan, 12 (1957) 6.

    無法下載圖示 校內:2020-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE