簡易檢索 / 詳目顯示

研究生: 白琦
Pai, Chi
論文名稱: 硒類與錸類化合物在離子液體中的電化學性質探討
Electrochemical Studies of Selenium and Rhenium Compounds in the Ionic Liquids
指導教授: 孫亦文
Sun, Yi-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 178
中文關鍵詞: 離子液體電沉積硒和硒化鋅錸化合物
外文關鍵詞: Ionic liquid, Elelctrodeposition, Selenium and Zinc selenide, Rhenium compound
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用電化學(CV)和光譜(UV/VIS、XAS)的技術將氧化硒(SeO2)和氯化硒(SeCl4)在室溫離子液體(EMIC-BF4)中的配位模式求出。另外兩個硒類前驅物在EMIC-BF4中的電化學行為會受到Cl-離子濃度、硒元素的形態不同而影響。在接近室溫下(40oC),藉由XRD、SEM 的技術比較兩前驅物(SeO2、SeCl4)在不同還原電位生成的硒元素形貌和性質上的差異。
    在離子液體(ZnCl2-EMIC)中,利用添加氧化物(Na2CO3、SeO2)的方式證實了在離子液體中SeCl4 確實會和氧產生反應,進而影響到在離子液體中的電化學行為。另外在40–60 mol% ZnCl2-EMIC 的離子液體中,利用成本較低的氧化硒(SeO2)作為電沉積硒(Se)和硒化鋅(ZnSe)半導體的前驅物。藉由電定位法發現在鎢電極上,Se4+還原到Se0的成核機制為瞬時成核。將Se4+經由4個電子還原成Se0後,若繼續還原到Se2-離子,將會和溶液中的Zn2+離子產生化學反應形成ZnSe。對於影響電沉積硒(Se0)和硒化鋅(ZnSe)的參數像是溫度、還原電位進行研究。電沉積樣品表面的形貌、成分和晶型結構以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X繞射分析儀(XRD)、穿透式電子顯微鏡(TEM)進行結構分析。
    從UV/VIS吸收光譜的實驗指出K2ReCl6 溶解進入EMI-BF4 中,依然會是以[ReCl6]2- 的配位形式存在,並且[ReCl6]2- 在EMI-BF4 中氧化到Re5+ 和還原到Re3+ 皆是半可逆的單電子轉移。[ReCl6]2- 在EMI-BF4 中,標準異質化速率常數(ko)、還原轉移系數(σ),分別為1.11x10-3 cm/s 、0.45。藉由Nernst Plots可求出[ReCl6]2- 在EMI-BF4 中,確實是以1個電子的氧化致[ReCl6]- 。另一方面計算還原電解[ReCl6]2- 在EMI-BF4 中所得的結果接近2個電子,並且在還原電解的過程,一莫爾的[ReCl6]3- 會釋放出一莫爾的Cl- 離子,並產生雙聚體化的反應發生。還原過程中所發生的反應可藉由循環伏安法、庫倫法和拉曼光譜圖幫助說明。當DCA- 陰離子存在於EMI-BF4 中時,還原電解[ReCl6]2-所得到的結果與不含DCA- 的結果不同,除了上述反應(釋放出Cl- 離子和雙聚體化)會發生外,還原產物還會和DCA- 產生錯核反應,形成包含DCA- 配位基的Re雙聚體化合物。

    When selenium dioxide(SeO2) and selenium tetrachloride(SeCl4) dissolved in room temperature ionic liquids (EMIC-BF4), the coordination mode of these two precursor in ionic liquid can be determined by electrochemical (CV) and spectroscopic (UV/VIS,XAS) methods. The electrochemical behavior of [SeO2Cl]- and [SeCl6]2- in EMIC-BF4 were influenced by chloride ion(Cl-) concentration and the nature of selenium . In addition, near the room temperature (40oC), using XRD, SEM technology to comparison the morphology and the nature of selenium at different reduction potential of these two precursors (SeO2, SeCl4).
    The electrochemical behavior of SeCl4 in ionic liquids (40-60 mol% of ZnCl2- EMIC) is very sensitive to oxygen confirmed by adding some oxides (Na2CO3, SeO2). Also, we are choosing lower cost of the selenium dioxide(SeO2) as a precursor to elelctrodeposit of Se and ZnSe semiconductor in the 40-60 mol% of ZnCl2- EMIC ionic liquid. The chronoamperometric result indicates that deposition of Se at tungsten substrate under three-dimensional instantaneous nucleation. Initially, the deposition of Se0 proceeds by four electron reduction of Se4+ to Se0, then further reduced to Se2- which chemically react with Zn2+ to produce ZnSe. The deposition parameters like temperature, reduction potential are discussed. The surface morphology, composition and crystal structure are studied with X-ray diffraction(XRD), Energy-dispersive spectroscopy(EDS) and scanning electron microscope(TEM).
    UV/VIS absorption spectrum pointed out that the species of K2ReCl6 in the EMI-BF4 is [ReCl6]2-, would not influence by the weak ligand (BF4-) in the ionic liquid. The CV shows that [ReCl6]2- can be oxidized to Re5+ and reduced to Re3+ via quasi reversible one-electron charge transfer process. The standard heterogeneous rate constant(ko), anodic transfer coefficient(σ), were 1.11x10-3 cm/s , 0.45. [ReCl6]2- in the EMI-BF4 is indeed via one electron oxidation to [ReCl6]- obtain from Nernst Plot . On the other hand, calculation the needed coulomb quantity to reduction of [ReCl6]2-, the result shows that nearly two electrons. At the reduction electrolysis process, [ReCl6]3- will release a Cl- ions and occurring the dimmerization reaction forming dimmer, the proof of this phenomenon are Cyclic Voltammetry, Coulometry and Raman spectra. On other hand, when DCA- anion present in the EMI-BF4, the result of reduction electrolysis is totally different from the reduction results without DCA- ion present in the EMI-BF4. Beside to the above reaction (release of Cl- ions and dimmerization), the reduce product will also complex with DCA- ligand, formation of Re dimmer compound that containing DCA- as a ligand.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XV 第1章 緒論 1 1.1 離子液體(IONIC LIQUID)的介紹及歷史發展 1 1.2 離子液體運用於電化學中的優勢 5 1.3 硒(SE)和硒化鋅(ZNSE) 7 1.3.1 硒(Se) 7 1.3.2 硒化鋅(ZnSe) 7 1.4 硒和硒化鋅的電化學相關文獻回顧 8 1.4.1 水溶液系統(Aqueous solution) 8 1.4.2 有機溶劑(Organic solvent) 10 1.4.3 高溫融鹽系統(Molten salt) 11 1.4.4 離子液體(Ionic liquid) 12 1.5 RE相關文獻回顧 13 1.6 研究動機 15 1.6.1 Se類化合物相關 15 1.6.2 Re化合物相關 16 第2章 實驗原理與方法 17 2.1 電化學的基本原理 17 2.2 循環伏安法(CYCLIC VOTAMMETRY, CV) 18 2.3 旋轉電極伏安法(ROTATING DISK ELECTRODE VOLTAMMETRY, RDEV) 20 2.4 定電位法(CHRONOAMPEROMETRY, CA) 21 2.5 定電位電解法(CHRONOAMPEROMETRY, CA) 22 2.6 電化學成核理論 22 2.6.1 成核動力學 23 2.6.2 二維空間的核成長(2-D growth) 26 第3章 實驗藥品與儀器 34 3.1 實驗藥品方面: 34 3.2 電沉積基材以及電極所使用的金屬 37 3.3 溶液的製備 38 3.3.1 EMI-BF4離子液體的製備 38 3.3.2 分析液的製備 38 3.4 半導體光電性質的測試: 39 3.5 實驗儀器及裝置 40 第4章 結果與討論 45 4.1 氧化硒和氯化硒在離子液體(EMIC-BF4)的性質比較 45 4.1.1 SeCl4和SeO2在EMIC-BF4中的配位模式 45 4.1.2 SeCl4和SeO2在EMIC-BF4中的電化學行為探討 48 4.1.3 [Cl]-離子濃度改變對[SeO2Cl]-和[SeCl6]2-在EMIC-BF4中的電化學影響 60 4.1.4 電沉積製備硒 67 4.2 氧化硒(SEO2)和氯化硒(SECL4)在ZNCL2-EMIC離子液體中的電化學行為 80 4.2.1 氧對氯化硒(SeCl4)在ZnCl2-EMIC離子液體的電化學行為影響 80 4.2.2 玻璃碳電極上硒的還原行為的探討(還原峰c2,Se0致Se2-) 84 4.2.3 在40-60 mol%的ZnCl2:EMIC離子液體中電沉積製備硒 87 4.2.4 Se4+在40-60 mol%的ZnCl2:EMIC離子液體中還原成Se0的成核現象 88 4.2.5 在40-60 mol%的ZnCl2:EMIC離子液體中電沉積製備硒 92 4.2.6 電沉積ZnSe半導體 98 4.2.7 ZnSe半導體奈米線的製作 108 4.2.8 半導體光電性值測量 110 4.3 K2RECL6在室溫離子液體(EMI-BF4)中的性質測量 113 4.3.1 K2ReCl6在室溫離子液體電化學性質 113 4.3.2 K2ReCl6在室溫離子液體中的吸收光譜 116 4.3.3 Re4+/Re5+氧化還原對的電化學性質探討 117 4.3.4 [ReCl6]-在室溫離子液體中的吸收光譜 123 4.3.5 [ReCl6]-在EMI-BF4中的穩定性探討 124 4.3.6 [ReCl6] -會完全轉換回[ReCl6] 2-嗎? 127 4.3.7 改變離子液體的種類(疏水性以及抗氧化能力較強的離子液體) (EMI-NTF2) 128 4.3.8 Re4+/Re5+的擴散係數 133 4.3.9 Re4+/Re3+氧化還原對的電化學性質探討 134 4.3.10 ReCl3溶解於含Cl-的EMI-BF4 136 4.3.11 在EMI-BF4中還原電解[ReCl6]2-產生ECCE的證據 138 4.3.12 產生Dimmer的證據顯示 141 4.3.13 Re2+-Re2+/Re2+-Re3+在EMI-BF4中的性質測量 144 4.3.14 配位基的置換(Ligand exchange) 148 4.3.15 改變掃描速率以及在還原電位做不同時間的沉積 150 4.3.16 Re4+/Re3+在含有DCA-的條件下進行電化學性質的探討 152 4.3.17 產生Dimmer的證據顯示 155 4.3.18 控制還原電解的庫倫數 157 4.3.19 Re3+-Re2+/Re3+-Re3+化合物在含有DCA-的EMI-BF4的性質測量 161 4.3.20 Re雙聚體的擴散係數 166 第5章 結論 167 參考資料 169 附錄 176

    1. K. R. Seddon, J. Chem. Tech. Biotechnol., 1997, 68, 351-356.
    2. P. Walden, Bull. Acad. Imper. Sci., 1914, 1800.
    3. F. H. Hurley and J. P. Wier, J. electrochem. Soc., 1951, 98, 203.
    4. R.A. Osteryoung, G. mamantov, R.Marassi, Molten salt Techniques, 1987, 329-364.
    5. J. A. L. John S. Wilkes, Robert A. Wilson, and a. C. L. Hussey, 1981, 21, 1263-1264.
    6. J. Jacquemin, P. Husson, A. A. H. Padua and V. Majer, Green Chemistry, 2006, 8, 172.
    7. W.-G. XU, LÜ, Xing-Mei, ZHANG, Qing-Guob and J.-S. Y. GUI, Jia-Zhena, Chinese Journal of Chemistry, 2006, 24, 331—335.
    8. M. B. Shiflett, A. M. S. Niehaus, B. A. Elliott and A. Yokozeki, International Journal of Thermophysics, 2012, 33, 412-436.
    9. H. X. Yang Zou, Guozhong Wu, Zheng Jiang, Shimou Chen, Yuying Huang, and X. W. Wei Huang, J. Phys. Chem. B, 2009, 113, 2066–2070.
    10. Hideaki Shirota, Keiko Nishikawa, and Tateki Ishida, J. Phys. Chem. B, 2009, 113, 9831–9839.
    11. D. L. Astolfi and F. C. Mayville, Tetrahedron Letters, 2003, 44, 9223-9224.
    12. K. Matsumoto, R. Hagiwara, R. Yoshida, Y. Ito, Z. Mazej, P. Benkic, B. Zemva, O. Tamada, H. Yoshino and S. Matsubara, Dalton Trans, 2004, 144-149.
    13. J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker and R. D. Rogers, Green Chemistry, 2001, 3, 156-164.
    14. D. B. Andrew, P. Abbott, Glen Capper, David L. Davies, and and R. K. Rasheed, J. AM. CHEM. SOC, 2004, 126, 9142-9147.
    15. Holbrey a. R. D. Rogers., Ann E. Visser, Chem. Commun., 2001, 2484–2485.
    16. Y. Y. Jiang, G. N. Wang, Z. Zhou, Y. T. Wu, J. Geng and Z. B. Zhang, Chem Commun, 2008, 505-507.
    17. C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson and Y. Zhou, Green Chemistry, 2003, 5, 143-152.
    18. O. Hofft and F. Endres, Physical chemistry chemical physics : PCCP, 2011, 13, 13472-13478.
    19. A. S. Kenneth R. Seddon, and María-José Torres, Pure Appl. Chem., 2000, 72, 2275–2287.
    20. Gau., I W. Sun, J Electrochem. Soc., 1996, 143, 170-174.
    21. M. Y. Hajime Matsumoto, Kazumi Tanimoto, Masakatsu Nomura, Yukiko Kitagawa, and Yoshinori Miyazaki, Chemistry Letters, 2000, 922-923.
    22. Y. Wang, S. R. Belding, E. I. Rogers and R. G. Compton, Journal of Electroanalytical Chemistry, 2011, 650, 196-204.
    23. R. L. Daniela Kerle´, Alfons Geiger, and Dietmar Paschek, J. Phys. Chem. B, 2009, 113, 12727–12735.
    24. M. Nefedieva, O. Lebedeva, D. Kultin, L. Kustov, S. Borisenkova and V. Krasovskiy, Green Chemistry, 2010, 12, 346.
    25. G. C. Andrew P. Abbott, David L. Davies, Katy J. McKenzie, and Stephen U. Obi, J. Chem. Eng. Data 2006, 51, 1280-1282.
    26. S. Morrissey, B. Pegot, D. Coleman, M. T. Garcia, D. Ferguson, B. Quilty and N. Gathergood, Green Chemistry, 2009, 11, 475.
    27. T. Liu, X. Sui, R. Zhang, L. Yang, Y. Zu, L. Zhang, Y. Zhang and Z. Zhang, Journal of chromatography. A, 2011, 1218, 8480-8489.
    28. C. Yan, B. Lu, X. Wang, J. Zhao and Q. Cai, Journal of Chemical Technology & Biotechnology, 2011, 86, 1413-1417.
    29. S. Doherty, J. G. Knight, J. R. Ellison, D. Weekes, R. W. Harrington, C. Hardacre and H. Manyar, Green Chemistry, 2012, 14, 925.
    30. T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv Mater, 2010, 22, 1196-1221.
    31. B. P. a. I. Grozdanov, Apply surface science, 2001, 177, 152-157.
    32. S. Zein El Abedin, A. Y. Saad, H. K. Farag, N. Borisenko, Q. X. Liu and F. Endres, Electrochimica Acta, 2007, 52, 2746-2754.
    33. M. Steichen and P. Dale, Electrochemistry Communications, 2011, 13, 865-868.
    34. U. Jeong, P. H. C. Camargo, Y. H. Lee and Y. Xia, Journal of Materials Chemistry, 2006, 16, 3893.
    35. J. Jie, W. Zhang, I. Bello, C.-S. Lee and S.-T. Lee, Nano Today, 2010, 5, 313-336.
    36. R. B. Kale and C. D. Lokhande, Applied Surface Science, 2005, 252, 929-938.
    37. A. Ennaoui, S. Siebentritt, M.Ch. Lux-Steiner, W. Riedl,F. Karg, 2001 67, 31-40.
    38. R. Alfano, Q. Wang, T. Jimbo, P. Ho, R. Bhargava and B. Fitzpatrick, Physical Review A, 1987, 35, 459-462.
    39. Rastogi, Lakshmikumar, Thin Solid Films, 1995, 259, 150-153.
    40. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, Journal of Applied Physics, 1994, 76, 1363.
    41. S.K. Hong, E. Kurtz, J.H. Chang, T. Hanada, M. Oku and T. Yao, Applied Physics Letters, 2001, 78, 165.
    42. A. L. FAHRENBRUCH, Journal of Crystal Growth, 1977, 39, 73-91.
    43. T. L. C. a. S. S. CHU, Solid-State Electronics, 1995, 38, 533-549.
    44. R. A. Reynolds, J. Vac. Sci. Technol. A, 1989, 7, 269-270.
    45. S. ME, J MATER SCI-MATER, 1996, 7, 391.
    46. G. T. D. B. B. P, SOLID STATE PHENOMENA, 1997, 55, 59-61.
    47. C. S. R. Chandramohan, and T. Mahalingam, Rapid Research Notes, 1997, 163, R11-R12.
    48. C. S. A. Rumberg, M. Toplak, A. JaÈger-Waldau, M. Ch. Lux-Steiner, Thin Solid Films, 2000, 361-362, 172-176.
    49. X. Zhang, Y. Xie, F. Xu, D. Xu and X. Liu, Inorganic Chemistry Communications, 2004, 7, 417-419.
    50. M. S. K. a. B. Miller, J. Electrochem. Soc., 1980, 869-873.
    51. E. A. T. M. V. MD, ELECTROCHIMICA ACTA, 1992, 37, 1165-1172.
    52. M. C. Santos and S. A. S. Machado, Journal of Electroanalytical Chemistry, 2004, 567, 203-210.
    53. A. Manzoli, M. C. Santos and S. A. S. Machado, Thin Solid Films, 2007, 515, 6860-6866.
    54. R. Kowalik and K. Fitzner, Journal of Electroanalytical Chemistry, 2009, 633, 78-84.
    55. Y. Lai, F. Liu, J. Li, Z. Zhang and Y. Liu, Journal of Electroanalytical Chemistry, 2010, 639, 187-192.
    56. H. L. P. A. K. Graham, and H. J. Boyd, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1959, 651-654.
    57. M. S. C. Natarajan , C. Levy-Clement and M. Neumann-Spallart, Thin Solid Films, 1994, 237, 118- 123.
    58. F. F. S. Cattarin, M.M. Musiani, Journal of Electroanalytical Chemistry, 1996 415, 123 -132.
    59. T. E. L. Baoming M. Huang, John L. Stickney, Surface Science, 1997, 392, 27- 43.
    60. T. E. L. Thomas A. Sorenson, Boaming M. Huang, and John L. Stickney, Journal of The Electrochemical Society, 1991, 146 019-1027.
    61. T. K. Mirtat Bouroushian, Zafiris Loizos, Nicholas Spyrellis, J solid state Electrochem, 2002, 6, 272-278.
    62. T. Kosanovic, M. Bouroushian and N. Spyrellis, Materials Chemistry and Physics, 2005, 90, 148-154.
    63. M. Bouroushian, T. Kosanovic and N. Spyrellis, Journal of Applied Electrochemistry, 2006, 36, 821-826.
    64. X. Y. Zhang, Y. Cai, J. Y. Miao, K. Y. Ng, Y. F. Chan, X. X. Zhang and N. Wang, Journal of Crystal Growth, 2005, 276, 674-679.
    65. S.Y. Zhang, J. Zhang, Y. Liu, X. Ma and H.-Y. Chen, Electrochimica Acta, 2005, 50, 4365-4370.
    66. X. Zhang, X. Shi and C. Wang, Journal of Solid State Electrochemistry, 2008, 13, 469-475.
    67. D. Gai., G. Hodes, Journal of The Electrochemical Society, 2000, 147 1825-1828.
    68. R. Henrı́quez, H. Gómez, G. Riveros, J. F. Guillemoles, M. Froment and D. Lincot, Electrochemical and Solid-State Letters, 2004, 7, C75.
    69. H. G. m. R. Henrı´quez, G. Riveros,J. F. Guillemoles, M. Froment, and D. Lincot, J. Phys. Chem. B, 2004, 108, 13191-13199.
    70. F. G. Bodwig. J. A. Plambeck, J. Electrochem. Soc., 1970, 117, 618-621.
    71. A. Yamaguchi, M. Yamaguchi, JAPAN. J.PHYS, 1975, 14, 561-565.
    72. D. L. Sylvie Sanchez, Pierre Cewache, Gerard Picard, M. Reyes Bermejo Fradejas and Yolanda Castrillejo, Electrochimica Acta. , 1998, 43, 1101- 1104.
    73. C. L. S. Sanchez, G.S. Picard, M.R. Bermejo, Y. Castrillejo, Thin Solid Films, 2000, 361-362 ,107-112.
    74. S. Rouquette-Sanchez and G. S. Picard, Journal of Electroanalytical Chemistry, 2004, 572, 173-183.
    75. A. A. Aal, F. Voigts, D. Chakarov and F. Endres, Electrochimica Acta, 2012, 59, 228-236.
    76. M. Druschler, N. Borisenko, J. Wallauer, C. Winter, B. Huber, F. Endres and B. Roling, Physical chemistry chemical physics : PCCP, 2012, 14, 5090-5099.
    77. I.W. Sun. Sandra K. D. Strubinger, W. E. Cleland, Jr., and Charles L. Hussey, Inorg. Chem. , 1990, 29, 4246-4252.
    78. I.W. Sun, Sandra K. D. Strubinger, Walter E. Cleland, Jr., and Charles L. Hussey, Inorg. Chem. , 1990, 29, 993-999.
    79. B. J. Kennedy, Inorgunica Chimica Acta, 1992, 195, 101-108.
    80. B. J. Kennedy, Inorganica Chimica Acta, 1991 ,187, 149-153.
    81. E. M. H. a. G. Mamantov, J. Electrochem. Soc., 1995, 142, 2532-2538.
    82. A. R. Brown, K. J. Taylor and L. J. Yellowlees, Journal of the Chemical Society, Dalton Transactions, 1998, 2401-2404.
    83. T. V. FLORENTINA GOLGOVICI, Chalcogenide Letters, 2011, 487, 487 - 497.
    84. N. M. a. K. R. Chang Wei, Journal of Electroanalytical Chemistry, 1994, 375, 109.
    85. A. Hippel, U.S. Patent No. 2649409, 1953.
    86. M. F. Cabral, V. A. Pedrosa and S. A. S. Machado, Electrochimica Acta, 2010, 55, 1184-1192.
    87. P. A. B. Charles L. Hussey, and I-Wen Sun, J. Electrochem. Soc., 1991, 138 2590-2594.
    88. A. J. B. a. L. R. Faulkner, Electrochemical Methode:Fundamentals and Applications(2nd ed.) Jonh Wiley&Sons, 2001.
    89. R. P. R. Greef, L. M. Peter, D. Pletcher and J. Robinson, Instrumental Methods in Electrochemistry, John Wiely & Sons, New Yourk, 1985.
    90. D. Pletcher, A First Course in Electrode Processes, The ElectrochemicalConsultancy, England., 1991.
    91. G. Gunawardenag., B. Gamini Gunawardenag and SCHARIFKER, J. Electroanal Chem., 1982, 138, 225-239.
    92. P. A. a. E. Souteyrand, J. Electroanal. Chem., 1990 286, 217-237.
    93. G. Trejo, and R. Ortega, Y. Mecis and P. Ozil, E. Chainet, and B. Nguyen, J. Electrochem. Soc., 1998, 145, 4090-4097.
    94. I. G. G. Trejo and A. F. GIL, JOURNAL OF APPLIED ELECTROCHEMISTRY, 1996, 26, 1287-1294.
    95. Y.F. L., I.W. Sun, Journal of The Electrochemical Society, 1999, 146, 1054-1059.
    96. C. L. H. a. X. Xu, J. Electrochem. Soc., 1991, 138, 1886-1890.
    97. M. Avrami, J. Chem. Phys., 1939, 7, 1103-1112.
    98. S. B. H. G, ELECTROCHIMICA ACTA, 1983, 28, 879-889.
    99. J. A. L. John S. Wilkes, Robert A. Wilson and Charles L. Hussey, Inorganic Chemistry, 1982, 21, 1263-1264.
    100. J. R. Sandres, The University of Mississippi, 1987.
    101. J. E. L. D. PAUL0 A. Z. SUAREZ, SANDRA EINLOFT, ROBERTO F. DE SOUZA and JAIRTON DUPONT, Polyhedron, 1996, 1217-1219.
    102. H.Y. Huang, D.J. Chien, G.-G. Huang and P.Y. Chen, Electrochimica Acta, 2012, 65, 204-209.
    103. S. Pitula and A. V. Mudring, Physical chemistry chemical physics : PCCP, 2010, 12, 7056-7063.
    104. M. L. a. R. A. OSTERYOUNG*, Inorg. Chem., 1985, 24, 716-719.
    105. S. Wasif and S. B. Salama, Journal of the Chemical Society, Dalton Transactions, 1975, 2239.
    106. M. M. a. J. MILNE, Inorganic Chemistry, 1983, 22.
    107. R. Pvk , KA. Kumar, PS. Swaroop, Transition Met. Chem, 1991, 16, 416-418.
    108. OI. SEMINA, MZ, UGORETS, PN. NAGUMANOV , JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1985, 58, 2045-2048.
    109. R. Kowalik, P. Żabiński and K. Fitzner, Electrochimica Acta, 2008, 53, 6184-6190.
    110. J.M. Yang, Y.-T. Hsieh, D.-X. Zhuang and I. W. Sun, Electrochemistry Communications, 2011, 13, 1178-1181.
    111. J.M. Yang, S.P. Gou and I. W. Sun, Chemical Communications, 2010, 46, 2686.
    112. M. D. A. Fausto Calderazzo, Fabio Marchetti and Guido Pampaloni *, J. Chem. Soc., Dalton Trans, 2000, 2497–2498.
    113. Z. S. Hogne Linga, and R. A. Osteryoung*, J. Am. Chem. SOC. , 1981, 103, 3754-3760.
    114. B. SCHARIFKER, G. HILLS, ELECTROCHIMICA ACTA, 1983, 28, 879-889.
    115. D. Gal, G. Hodes, Journal of The Electrochemical Society, 2000, 147, 1825-1828
    116. 楊明桓, 國立成功大學化學系碩士論文, 2002.
    117. M.C. Lin, P.-Y. Chen and I. W. Sun, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148, C653.
    118. R. K. Pandey, Handbook of Semiconductor Electrodeposition, Chap. 5, Marcel Dekker, New York, 1996.
    119. R. S. NICHOLSON, 1965, 37, 1351-1355.
    120. A. Babai, S. Pitula and A.-V. Mudring, European Journal of Inorganic Chemistry, 2010, 4933-4937.
    121. K. L. a. M. Frrba , W. Metz Physica B, 1995, 208-209,552-554.
    122. M. K. S. G. J. Q, ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1968, 24, 874.
    123. Y.F. L., Po-Yu Chen, and I-Wen Sun, Journal of The Electrochemical Society,, 1999, 146 3290-3294.
    124. W.J. G., IW. Sun, J. Electrochem. Soc., 1996, 143, 914-919.
    125. W.J. G. ,IW. Sun, J. Electrochem. Soc., 1996, 143, 170-174.
    126. J. JOSEPH SAN FILIPPO and HENRY J. SNIADOCH, Inorganic Chemistry, 1973, 12, 2326-2333.
    127. L. Hajba, J. Mink, F. E. Kühn and I. S. Gonçalves, Inorganica Chimica Acta, 2006, 359, 4741-4756.
    128. C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes:Pergamon: Oxford, 1962, 112.
    129. V.V. Strelko, N.T. Kartel , I.N. Dukhno, V.S. Kuts ,R.B. Clarkson, B.M. Odintsov, Surface Science, 2004, 548 , 281–290.

    下載圖示 校內:2017-07-30公開
    校外:2017-07-30公開
    QR CODE