簡易檢索 / 詳目顯示

研究生: 許懷少
Hsu, Huai-Shao
論文名稱: 石墨烯披覆之奈米矽酸鋰鐵之合成及其於鋰離子電池應用
Synthesis of Graphene – Scattered Nano Li2FeSiO4 for Lithium – Ion Battery Application
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 鋰離子電池矽酸鋰鐵水熱法石墨烯正極材料
外文關鍵詞: Lithium ion battery, Lithium iron silicate, Hydrothermal method, Graphene, Cathode material
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以低溫水熱法配合保護劑的使用,合成出具奈米尺寸的矽酸鋰鐵,並應用樹脂披覆、樹脂和石墨烯同時披覆及樹脂和石墨烯批次披覆的方式,經高溫碳化後製備出Li2FeSiO4/C正極複合材料。
    使用不同碳源比例以及不同的批覆次序,會直接影響矽酸鋰鐵的外觀形態及效能。實驗中以X-光繞射儀測量材料的晶格結構,由掃描式電子顯微鏡及穿透式電子顯微鏡觀察材料的外觀型態,由結果可知碳層披覆可避免矽酸鋰鐵高溫燒結,依然可以維持奈米尺寸;石墨烯的披覆,可有效幫助矽酸鋰鐵粒子分散。
    以鈕扣型電池進行Li2FeSiO4/C 複合正極材料循環充放電測試,批次披覆碳源的NLFS/R/graphene系統,在0.05C放電速率下有高於理論電容的182 mAh g-1表現,於1C放電速率下也有66 mAh g-1表現,代表石墨烯在充放電過程中能有效提高正極複合材料之效能。

    A Li2FeSiO4 nanoparticles (NLFS, length:100~200 nm, width:30~120 nm) has been prepared by using LiOH‧H2O, FeC2O4‧2H2O, and nano SiO2 as precursors, via a hydrothermal process. Then, the resin and the graphite oxide or graphene as carbon source was coated on the Li2FeSiO4 (NLFS/C) via an in-situ or batch coating route.
    The crystal structures of NLFS/C are characterized by X-ray diffraction (XRD), and the morphology of NLFS/C is observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). With the carbon coating, NLFS can be prevented from aggregation, and improve the dispersion.
    The charge-discharge performances of the NLFS/C composite materials are demonstrated by using coin cells. NLFS be coated by batch route exhibits high discharge capacity of 182 mAh g-1 at 0.05C, in the voltage range between 1.5-4.7 V. This indicates that the present of graphene can efficiently elevate the performance of LFS.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 鋰離子電池簡介 2 1.3 正極材料 4 1.3.1 層狀結構之正極材料 7 1.3.2 尖晶石結構之正極材料 8 1.3.3 橄欖石結構之正極材料 9 1.3.4 多晶系結構之正極材料 10 1.3.5 高電容量之有機硫磺系正極材料 11 1.4 負極材料 12 1.4.1 碳材負極材料 13 1.4.2 矽基負極材料 14 1.4.3 鋰鈦複合氧化物負極材料 15 1.5 電解質 16 1.5.1 液態電解液 16 1.5.2 高分子電解質 17 1.6 隔離膜 18 第二章 文獻回顧 21 2.1 鋰離子電池之工作原理 21 2.2 Li2FeSiO4正極材料之介紹 22 2.2.1 Li2FeSiO4的晶格結構 24 2.2.2 Li2FeSiO4的Li+1擴散機制 25 2.2.3 Li2FeSiO4的一個Li+1脫出之特質與探討 26 2.2.4 Li2FeSiO4的二個Li+1脫出之特質與探討 28 2.2.4 Li2FeSiO4做為負極材料之可能 30 2.3 Li2FeSiO4正極材料之合成方法 31 2.3.1 固態反應法 31 2.3.2 溶膠凝膠法 31 2.3.3 溶劑熱法 33 2.4 Li2FeSiO4正極材料改質技術 34 2.4.1 利用碳修飾改質 34 2.5 研究動機 37 第三章 實驗 38 3.1實驗藥品與材料 38 3.2樣品製備 40 3.2.1 氧化石墨烯(Graphite Oxide, GO)之製備 40 3.2.2 石墨烯(Graphene)之製備 40 3.2.3 NLFS之製備 41 3.2.4 NLFS披覆樹脂碳源複合正極材料之製備 41 3.2.5 NLFS披覆樹脂兼氧化石墨烯碳源複合正極材料之製備 42 3.2.6 NLFS披覆樹脂碳源並摻雜石墨烯碳源複合正極材料之製備 42 3.3材料性質分析 43 3.3.1 X光繞射儀(XRD) 43 3.3.2 掃描式電子顯微鏡(SEM) 44 3.3.3 穿透式電子顯微鏡(TEM) 44 3.3.4 氮氣等溫吸附/脫附測量(BET) 45 3.3.5 顯微拉曼光譜儀(Raman) 46 3.4 電化學性質量測 47 3.4.1 正極極片之製作 47 3.4.2 充放電測試( C-rate Test) 48 3.4.3 循環伏安法( Cyclic Voltammetry) 49 第四章 結果與討論 50 4.1 最佳保護劑添加量之選取 50 4.2 正極材料X光繞射結構分析 51 4.2.1 NLFS於碳披覆前後XRD晶型改變之探討 52 4.2.2 單一碳源系列不同碳量的XRD晶型探討 53 4.2.3 雙重碳源系列的XRD晶型探討 54 4.3 正極材料掃描式電子顯微鏡(SEM)觀察 55 4.3.1單一碳源系列不同碳量的 SEM探討 56 4.3.2雙重碳源系列的 SEM探討 58 4.4 正極材料穿透式電子顯微鏡(TEM)觀察 59 4.4.1單一碳源系列不同碳量的 TEM探討 60 4.4.2雙重碳源系列的 TEM探討 62 4.5 正極材料熱重分析儀(TGA)測量 64 4.6 正極材料拉曼(Raman)光譜分析 65 4.7 正極材料比表面積(BET)測試 67 4.8 正極材料鈕扣型電池充放電測試 69 4.8.1 NLFS的鈕扣型電池充放電測試 69 4.8.2 單一碳源系列不同碳量的鈕扣型電池充放電測試 71 4.8.3 雙重碳披覆源的鈕扣型電池充放電測試 74 4.9 循環伏安法(CV)電化學測試 78 第五章 結論 82 參考文獻 84

    1. A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas, Electrochemistry Communications 2005, 7, 156–160.
    2. J. –M. Tarascon, M. Armand, Nature 2001, 414, 359-367.
    3. 林振華; 林振富, 充電式鋰離子電池, 2001.
    4. G. C. Kuczynski, Trans. Am. Inst. Min. (Metall.) Eng. 1949, 185, 169.
    5. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater. 2002, 1, 123.
    6. M. Thackeray, Nat. Mater. 2002, 1, 81-82.
    7. M. Thackeray, J. Electrochem. Soc. 1995, 142, 2558-2563.
    8. C. H. Shen, R. S. Liu, R. Gundakaram, J. M. Chen, S. M. Huang, J. S. Chen, C. M. Wang, J. Power Sources 2001, 102, 21-28.
    9. Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, G. Chen, J. Phys. Chem. B 2004, 108, 18547-18551.
    10. C. H. Lu, Y. Lin, H. C. Wang, J. Mater. Sci. Lett. 2003, 22, 615-618.
    11. D. Capsoni, M. Bini, G. Chiodelli, P. Mustarelli, V. Massarotti, C. B. Azzoni, M. C. Mozzati, L. Linati, J. Phys. Chem. B 2002, 106, 7432-7438.
    12. T. D. Sparks, A. Gurlo, D. R. Clarke, J. Mater. Chem. 2012, 22, 4631-4636.
    13. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188-1194.
    14. N. Raver, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Source. 2001, 97, 503.
    15. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, ECS Meeting Abstract, 58, Los Angeles, CA., May 5-10, 1996, vol. 96-1.
    16. N. Ravet, J.-F. Magnan, M. Gauthier and M. Armand, International Conference on Materials for Advanced Technologies (ICMAT 2001), MRS Singapore, July 1–6, 2001.
    17. M. Armand, M. Gauthier, J. F. Magnan and N. Ravet, PCT WO 02/27823 and WO 01/27824.
    18. M. Gauthier, D. Geoffroy, M. Armand and N. Ravet, The 20th International Seminar on Primary and Secondary Batteries, Florida Educational Seminar Inc., Boca Raton, Florida, USA, March 17–20, 2003.
    19. C.-W. Wang, A. M. Sastry, K. A. Striebel, and K. Zaghib, J. Electrochem. 2005, Soc.,152, A1001.
    20. J. Kim, B. Kim, J.-G. Lee, J. Cho, and B. Park, J. Power Sources, 2005 139, 289.
    21. S. Mandal, J. M. Amarilla, J. Ibanez, and J. M. Rojo, J.Electrochem. 2001, Soc., 148,A24.
    22. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. 1997, Soc.,144, 1188.
    23. C. C. Chang, L. J. Her, H. K. Su, S. H. Hsu, and Y. T. Yen, Journal of The Electrochemical Society, 2011, 158 (5) A481-A486.
    24. N. Meethong, Y. H. Kao, S. A. Speakman, Y. M. Chiang, Adv. Funct. Mater. 2009, 19, 1060.
    25. J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett., 2005, 59, 2361.
    26. X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao, J. Power Sources, 2008, 184, 543.
    27. H. Liu, C. Li, Q. Cao, Y. P. Wu and R. Holze, J Solid State Electrochem, 2008, 12, 1017.
    28. C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, J. Power Sources, 2009, 193, 841.
    29. M. Zhang, L. F. Jiao, H. T. Yuan, Y. M. Wang, J. Guo, M. Zhao, W. Wang, X. D. Zhou, Solid State Ionic, 2006, 177, 3309.
    30. J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park, Y.S. Lee, Mater. Lett., 2009, 63, 581.
    31. P. Tang, N. A. W. Holzwarth, Phys. Rev. 2003, B, 68, 165107.
    32. D. Marmorstein, T. H. Yu, K. A. Striebel, F. R. McLarnon, J. Hou, E. J. Cairns, J. Power Sources, 2000, 89:219-226 .
    33. N. Petr, M. Klaus, K. S. V. Santhanam, H. Otto, Chem. Rev., 1997, 97:207-282 .
    34. K. Kumaresan, Y. Mikhaylik, R. White, J. Electrochem. Soc., 2008, 155:A576-A582.
    35. Y. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc., 2004, 151:A1969-A1976.
    36. X. M. He, J. G. Ren, L. Wang, W. H. Pu, C. Y. Jiang, C. R. Wan, J. Power Sources, 2009, 190:154-156.
    37. L. B. Ebert, Annu. Rev. Mater. Sci. 1976, 6, 181-211.
    38. J. O. Besenhard, J. Power Sources 1976, 77, 267-276.
    39. G. K. Wertheim, P. M. Th. M. Van Attekum, S. Basu, Solid State Comm. 1980, 33, 1127-1130.
    40. V. A. Nalimova, D. Guérard, M. Lelaurain, O. V. Fateev, Carbon 1995, 2, 177-181.
    41. J. Jiang, J. R. Dahn, Electrochim Acta 2004, 49, 4599-4604.
    42. K. Xu, Chem. Rev. 2004, 104, 4303-4417.
    43. B. A. Boukamp, G. C. Lesh, R. A. Huggins, J. Electrochem. Soc. 1981, 128, 725-729.
    44. S. M. Hwang, H. Y. Lee, S. M. Jang, S. J. Lee, H. K. Baik, J. Y. Lee, Electrochem. Solid-State Lett. 2001, 4, A97-A100.
    45. G. A. Robert, E. J. Cairns, J. A. Reimer, J. Power Sources 2002, 110, 424-429.
    46. I. Kim, G. E. Blomgren, P. N. Kumta, J. Power Sources 2004, 130, 275-280.
    47. P. Patel, I. Kim, P. N. Kumta, Mat. Sci. Eng. B-Solid 2005, 116, 347-352.
    48. I. Kim, P. N. Kumta, G. E. Blomgren, Electrochem. Solid-State Lett. 2000, 3, 493-496.
    49. I. Kim, G. E. Blomgren, P. N. Kumta, Electrochem. Solid-State Lett. 2003, 6, A157-A161.
    50. W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H, Yang, N. L. Wu, J. Electrochem. Soc. 2005, 152, A1719-A1725.
    51. J. Xie, G. S. Cao, X. B. Zhao, Mater. Chem. Phys. 2004, 88, 295-299.
    52. M. Holzapfel, H. Buqa, F. Krumeich, P. Novák, F. -M. Petrat, C. Veitc, Electrochem. Solid-State Lett. 2005, 8, A516-A520.
    53. T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu, H. B. Qiao, J. Phys. Chem. Solids 2010, 71, 1236-1242.
    54. J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources 1999, 77, 183-197.
    55. 黃可龍; 王兆翔; 劉素琴, 鋰離子電池原理與技術, 2010.
    56. M. Armand, Materials For Advanced Batteries. New York: Plenum Press, 1980. 145–161.
    57. A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas, Electrochem Commun, 2005, 7: 156–160.
    58. Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Electrochemical and Solid-State Letters, 2008, 11 (5) A60-A63.
    59. M. E. Arroyo-de Dompablo, M. Armand, J. M. Tarascon, et al., Electrochem Commun, 2006, 8: 1292–1298.
    60. P. Larsson, R. Ahuja, A. Nytén, et al., Electrochem Commun, 2006, 8:797–800.
    61. A. Nytén, S. Kamali, L. Haggstrom, et al., J Mater Chem, 2006, 16: 2266–2272.
    62. 呂東平, 博士學位論文, 廈門: 廈門大學, 2011.
    63. A. Nytén, M. Stjerndahl, H. Rensmo, et al., J Mater Chem, 2006, 16: 3483–3488.
    64. C. Sirisopanaporn, C. Masquelier, P. G. Bruce, A. R. Armstrong, and R. Dominko, J. Am. Chem. Soc., 133, 1263 (2011).
    65. N. Yabuuchi, Y. Yamakawa, K. Yoshii, and S. Komaba, Dalton Trans., 40, 1846 (2011).
    66. A. R. Armstrong, N. Kuganathan, M. S. Islam, and P. G. Bruce, J. Am. Chem. Soc., 133, 13031 (2011).
    67. S. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama, and A. Yamada, J. Am. Chem. Soc., 130, 13212 (2008).
    68. A. Boulineau, C. Sirisopanaporn, R. Dominko, A. R. Armstrong, P. G. Bruce, and C. Masquelier, Dalton Trans., 39, 6310 (2010).
    69. C. Sirisopanaporn, A. Boulineau, D. Hanzel, R. Dominko, B. Budic, A. R. Armstrong, P. G. Bruce, and C. Masquelier, Inorg. Chem., 49, 7446 (2010).
    70. P. Zhang, C. H. Hu, S. Q. Wu, Z. Z. Zhu and Y. Yang, Phys. Chem. Chem. Phys., 2012, 14, 7346–7351.
    71. K. M. Bui, V. A. Dinh, and T. Ohno, Applied Physics Express, 2012, 5, 125802.
    72. A. Liivat and J. O. Thomas: Solid State Ionics, 2011, 192, 58.
    73. A. Kojima, T. Kojima and T. Sakai, J. Electrochem. Soc. 2012, Volume 159, Issue 5, Pages A525-A531.
    74. D. Rangappa, K. D. Murukanahally, T. Tomai, A. Unemoto, and I. Honma, Nano Lett. 2012, 12, 1146−1151.
    75. C. Dippel, S. Krueger, R. Kloepsch, P. Niehoff, B. Hoffmann, S. Nowak, S. Passerini, M. Winter, J. Li, Electrochimica Acta, 2012, 85, 66– 71.
    76. Z. Chen, S. Qiu, Y. Cao, J. Qian, X. Ai, K. Xie, X. Hong and H. Yang, J. Mater. Chem. A, 2013, 1,4988.
    77. N. Kalaiselvi, C.H. Doh, C.W. Park, S.I. Moon, M.S. Yun, Electrochem. Commun. 2004, 6, 1110e1113.
    78. Y. Xu, Y. Li, S. Liu, H. Li, Y. Liu, Journal of Power Sources, 2012, 220, 103e107.
    79. O. Toprakci, H. A. K. Toprakci, L. W. Ji, X. W. Zhang, KONA Powder and Particle Journal 2010, 28, 50-73.
    80. L. L. Hench, J. K. West, Chem. Rev. 1990, 90, 33-72.
    81. D. Arumugam, G. P. Kalaignan, P. Manisankar, J. Solid State Electrochem. 2009, 13,301-307.
    82. S. Yang, P. Y. Zavalij, M. S. Whittingham, Electrochem. Comm. 2001, 3,505-508.
    83. S. Yang, Y. Song, P. Y. Zavalij, M. S. Whittingham, Electrochem. Comm. 2002, 4, 239-244.
    84. C. Delacourt, C. Wurm, L. Laffont, J. –B. Leriche, C. Masquelier, Solid State Ionics 2006, 177, 333-341.
    85. A. V. Murugan, T. Muraliganth, A. Manthiram, J. Phys. Chem. C 2008, 112, 14665-14671.
    86. C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 2011, 133, 2132-2135.
    87. G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, J. Power Sources 2006, 160, 516-522.
    88. Z. R. Chang, H. J. Lv, H. W. Tang, H. J. Li, X. Z. Yuan, H. J. Wang, Electrochim. Acta 2009, 54, 4595-4599.
    89. L. H. Yu, Q. S. Liu, H. H. Wang, Ionics 2009,15, 689-692.
    90. B. Jin, H. B. Gu, W. X. Zhang, K. H. Park, G. P. Sun, J. Solid State Electrochem. 2008, 12, 1549-1554.
    91. G. C. Liang, L. Wang, X. Q. Ou, X. Zhao, S. Z. Xu, J. Power Sources 2008, 184, 538-542.
    92. K. F. Hsu, S. Y. Tsay, B. J. Hwang, J. Mater. Chem. 2004, 14, 2690-2695.
    93. Y. G. Wang, Y. R. Wang, E. Hosono, K. X. Wang, H. S. Zhou, Angew. Chem. Int. Ed. 2008, 47, 7461-7465.
    94. W. J. Zhang, J. Power Sources 2011, 196, 2962-2970.
    95. H. Q. Li, S. H. Zhou, Chem. Comm. 2012, 48, 1201-1217.
    96. H. Zhou, M.-A. Einarsrud, F. Vullum-Bruer, Journal of Power Sources, 2013, 235, 234e242.
    97. W. S. Hummers, R. E. Offeman, Journal of the American Chemical Society 1958, 80 (6): 1339.
    98. L. H. Hu, F. Y. Wu, C. T. Lin, A. N. Khlobystov, L. J. Li, Nature Communications 2013, 101038, 2705.
    99. S. R. Das, S. B. Majumder, R. S. Katiyar, J. Power Sources 2005, 139, 261.
    100. A. Liivat, J. O. Thomas, Solid State Ionics 2011, 192, 58–64.

    無法下載圖示 校內:2018-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE