簡易檢索 / 詳目顯示

研究生: 陳韋憲
Chen, Wei-Shian
論文名稱: 雷射干涉微影術製作T型閘極氮化鋁鎵/氮化鎵金氧半高電子遷移率場效電晶體之研究
Investigation of T-Shaped Gate AlGaN/GaN Metal-Oxide Semiconductor High-Electron-Mobility Transistors Fabricated Using Laser Interference Photolithography Method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 氮化鋁鎵/氮化鎵光電化學法聚酸鉀酯T型閘極之金氧半高電子遷移率場效電晶體
外文關鍵詞: AlGaN/GaN, Photoelectrochemical, PMMA, T-gate HEMTs
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究T型閘極高電子遷移率場效電晶體將由多重閘極高電子遷移率場效電晶體搭配聚酸鉀酯完成製作,聚酸鉀酯旋轉塗佈於多重閘極線寬中作為元件暫時支撐層,經由高溫加熱使聚酸鉀酯蒸發形成T型閘極懸空結構,達到最低空氣介電質(ε=1)以減少T型閘極頂部引起的寄生電容。
    多重閘極結構與單閘極結構比較上,IDSS在VGS為4 V及VDS為6 V下由492.3 mA/mm提升到623.8 mA/mm,在VDS為6 V時"g" _"m(max)" 由97.3 mS/mm提升到118.2 mS/mm,改善原因為雷射干涉微影技術定義出閘極線寬為0.8 μm,且有效縮短閘源極距離,使通道電場增強以提升元件特性,在多重閘極結構下減少閘極表面載子注入,使閘極漏電流由7.58×10-6 A 減少至9.72×〖10〗^(-7) A,電流增益截止頻率由7.6 GHz提升到10.8 GHz,最大震盪頻率由11.4 GHz提升到15.8 GHz。
    T型閘極之高電子遷移率場效電晶體之IDSS在VGS為4 V及VDS為6 V下達到624.1 mA/mm,在VDS為6 V時"g" _"m(max)" 達到118.4 mS/mm,然而T型閘極結構有效改善閘極邊緣峰值電場,使閘極漏電流由9.72×10-7 A 減少至7.32×10-7 A以及崩潰電壓大幅提升,在電流增益截止頻率為10.8 GHz,T型閘極結構使閘極電阻明顯減少,因此最大震盪頻率由15.8 GHz提升至27.4 GHz。

    In this research, High performance GaN-based T-gate structured met-al-oxide-semiconductor high-electron-mobility transistors (T-gate MOS-HEMTs) with multiple-gate structure and polymethylmethacrylate (PMMA) were fabricated. The drain-source current (IDS) of the single-gate and T-gate MOS-HEMTs at the drain-source voltage (VDS) of 6 V and gate-source voltage (VGS) of 4 V were 492.3 mA/mm and 624.1 mA/mm, respectively. Their corresponding maximum extrinsic transconductance values were 97.3 mS/mm and 118.4 mS/mm, respectively. Due to the improvement in the gate length and the gate resistance, the current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) of the T-gate MOS-HEMTs were promoted to 10.8 GHz and 27.4 GHz, respectively.

    摘要....................................................I Abstract..............................................III 致謝.................................................VIII 目錄....................................................X 表目錄................................................XIV 圖目錄.................................................XV 第一章 簡介............................................1 1.1 氮化鋁鎵/氮化鎵高速電子遷移率電晶體................1 1.2 研究動機........................................2 1.3 論文架構........................................4 參考文獻................................................7 第二章 原理與文獻回顧..................................10 2.1 氮化鋁鎵/氮化鎵異質結構..........................10 2.1.1 氮化鋁鎵/氮化鎵異質結構之成長.....................10 2.1.2 二維電子氣(2DEG)之特性...........................11 2.2 氮化鋁鎵蝕刻原理.................................11 2.2.1 光電化學(Photoelectrochemical; PEC)氧化法.......11 2.3 T型閘極發展現況及各製備方法.......................13 2.3.1 T型閘極發展現況.................................13 2.3.2 各方法製備T型閘極結構............................13 2.4 高頻量測下之S參數...............................15 2.4.1 電流增益截止頻率(Current gain cut-off frequency, fT)....................................................16 2.4.2 最大震盪頻率(Maximum oscillation frequency, fmax)..................................................18 2.5 崩潰電壓(Breakdown Voltage).....................19 參考文獻................................................26 第三章 元件製程及量測儀器...............................33 3.1 試片結構........................................33 3.2 元件製作流程....................................33 3.2.1 高台隔離製作(Mesa isolation)....................33 3.2.2 硫化表面處理....................................35 3.2.3 歐姆接觸電極(Ohmic contact).....................35 3.2.4 閘極氧化層成長..................................37 3.2.5 雷射干涉微影技術定義多重閘極結構..................38 3.2.6 閘極下針區域製作.................................40 3.2.7 T型閘極製程.....................................41 3.3 製程及量測儀器..................................42 3.3.1 雷射干涉微影系統(Laser Interference Photolithography Technique,LIL).......................42 3.3.2 電子束蒸鍍系統 (Electron-beamevaporation system)44 3.3.3 磁控式濺鍍系統 (Magnetron Sputter system).......44 3.3.4 掃描式電子顯微鏡(Scanning electron microscopy,SEM)...................................................45 3.3.5 DC電流-電壓量測系統..............................45 3.3.6 高頻量測系統....................................46 參考文獻................................................56 第四章 實驗結果與討論..................................58 4.1 單閘極之高電子遷移率場效電晶體(Single-Gate HEMTs).58 4.1.1 單閘極結構之直流特性量測..........................58 4.1.2 單閘極結構之閘極漏電流及崩潰電壓量測...............59 4.1.3 單閘極結構之高頻特性量測..........................60 4.2 多重閘極之高電子遷移率場效電晶體(Multiple-Gate HEMTs).................................................60 4.2.1 多重閘極結構之直流特性量測........................61 4.2.2 多重閘極結構之閘極漏電流及崩潰電壓量測.............62 4.2.3 多重閘極結構之高頻特性量測........................63 4.3 T型閘極高電子遷移率場效電晶體(T-Gate HEMTs).......64 4.3.1 T型閘極結構之直流特性量測.........................65 4.3.2 T型閘極結構之漏電流量測及崩潰電壓量測..............65 4.3.3 T型閘極結構之高頻特性量測.........................66 參考文獻................................................77 第五章 結論...........................................79

    第一章
    [1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, 1994.
    [2]張家華, “異質結構AlGaN/GaN金屬接面特性之研究,”國防大學中正理工學院電子工程研究所碩士論文,2001.
    [3]L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W. J. Schaff, and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power application,”, IEEE Trans. Electron Devices, vol. 48, pp. 479-485, 2001.
    [4]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of Al-GaN/GaN heterojunction modulation doped FETs”, IEEE Trans. Electron Devices, vol. 48, pp. 450-457, 2001.
    [5]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P.Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy”, J. Appl.Phys., vol. 86, pp. 4520-4526, 1999.
    [6]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped AlGaN/GaN heterostructures”, J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [7] H. Morkoc, A. D. Carlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detectors”, Solid-State Electronics, vol. 46, pp. 157-202, 2002.
    [8]R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, and L. F. Eastman, “Two-dimensional electron gases in Ga-face and N-face Al-GaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and Metalorganic chemical vapor deposition on sapphire”, J. Appl. Phys., vol. 87, pp. 3375-3380, 2000.
    [9]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W.J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-f-ace AlGaN/GaN heterostructures”, J. Appl. Phys, vol. 85, pp. 3222-3233, 1999.
    [10]W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD”, IEEE Electron device lett., vol. 20, pp. 304-306, 1999.
    [11]Y. Todokoro, “Double-Layer Resist Films for Submicrometer Elec-tron-Beam Lithography”, IEEE Solid State Circuits, vol. 15, pp. 508-513, 1980.
    [12]J. Mateos, T. Gonz´alez, D. Pardo, V. Hoel, and A. Cappy, “Effect of the T-gate on the performance of recessed HEMTs. A Monte Carlo analysis”, Semicond. Sci. Technol., vol. 14, pp. 864-870, 1999.
    [13]T. Huang, Z. J. Liu, X. Zhu, J. Ma, X. Lu, and K. M. Lau, “DC and RF performance of gate-last AlN/GaN MOSHEMTs on Si with regrown source/drain”, IEEE Trans. Electron device, vol. 60, pp. 3019-3024, 2013.
    [14]X. L, J Ma, H. Jiang, C. Liu, P. Xu, and K. M. Lau, “Fabrication and characterization of gate-Last self-aligned AlN/GaN MISHEMTs With In Situ SiNx gate dielectric”, IEEE Trans. Electron device, vol. 62, pp. 1862-1868, 2015.
    第二章
    [1]O. Ambache, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M.Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [2]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gas induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [3]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaar, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy”, J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
    [4]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs”, IEEE Trans. Electron Devices, vol. 48, pp. 450-457, 2001.
    [5]M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C”, Appl. Phys. Lett., vol. 66, pp. 1083-1085, 1995.
    [6]E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”, Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
    [7]L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method”, J. Electrochem. Soc., vol. 154, pp. 862-866, 2007.
    [8]Y. Murase, K. Asano, Y. Ando, H. Takahashi, and C. Sasaoka, “T-shaped gate GaN HFET on Si with improved breakdown voltage and fMAX”, IEEE Trans. Electron Devices letters, vol. 35, pp. 524-526, 2014.
    [9]D. S. Lee, J. W. Chung, H. Wang, X. Gao, S. Guo, and P. Fay, “245-GHz InAlN/GaN HEMT with oxygen plasma treatment”, IEEE Trans. Electron Devices letters, vol. 32, pp. 755-757, 2011.
    [10]Y. Todokoro, “Double-layer resist films for submicrometer electron-beam lithography”, IEEE Solid State Circuits, vol. 15, pp. 508-513, 1980.
    [11]A. S. Wakita, C. Y. Su, H. Rohdin, H. Y. Liu, A. Lee, J. Seeger, and V. M. Robbins, “Novel high-yield tri layer resist process for 0.1 μm T-gate fabrication”, J. Vac. Sci. Tehnol. , vol. 13, pp. 2725-2728, 1995.
    [12]T. C. Liao, C. Y. Wu, F. T. Chien, C. C. Tsai, H. H. Chen, C. Y. Kung, and H.C. Cheng, “A ploy thin-film transistor with the In Situ vacuum gaps under the T-shaped gate electrode”, Electrochemical and Solid-Statae Letters, vol. 9, pp. 347-350, 2006.
    [13]許振嘉,許渭州,“選擇性蝕刻於T型閘極高電子移動率電晶體之研製,”國立成功大學微電子所碩士論文, 2011.
    [14]X. L, J Ma, H. Jiang, C. Liu, P. Xu, and K. M. Lau, “Fabrication and characterization of gate-last self-aligned AlN/GaN MISHEMTs with In Situ SiNx gate dielectric”, IEEE Trans. Electron device, vol. 62, pp. 1862-1868, 2015.
    [15]D. H. Kim, S. J. Yeon, J. H. Lee, and K. S. Seo, “30 nm Triple-gate In0.7GaAs HEMTs fabricated by damage-free SiO2/SiNx sidewall process and BCB planarization”, Jpn. J. Appl. phys., vol. 43, pp. 1905-1909, 2004.
    [16]H. V. Demir, J. F. Zheng, V. A. Sabnis, O. Fidaner, J. Hanberg, J. S. Harris, Jr., and D. A. B. Miller, “Self-aligning planarization and passivation for integration application in III-V semiconductor devices”, IEEE Trans. Semicond. Manuf., vol. 18, pp. 182-189, 2005.
    [17]J. W. Chung, T. W. Kim, and T. Palacios, “Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs”, IEDM Tech. Dig., vol. 10, pp. 676-679, 2010.
    [18]E. Y. Chang, C. I. Kuo, H. T. Hsu, C. Y. Chiang, and Y. Miyamoto, “InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications”, Jpn. J. Appl. Phys., vol. 6, pp. 034001-1-034001-3, 2013.
    [19]S. J. Yeon, M. Park, J. Choi, and K. Seo, “610 GHz InAlAs/In0.75GaAs metamorphic HEMTs with an ultra-short 15-nm-gate”, IEDM Tech. Dig., vol. 07, pp 613-616, 2007.
    [20]Y. Yamashita, A. Endoh, K. Shinohara, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, “Ultra-short 25-nm-gate lattice-matched InAlAs/InGaAs HEMTs within the range of 400 GHz cutoff frequency”, IEEE ELECTRON DEVICE LETTERS, vol. 22, pp. 367-369, 2001.
    [21]K. L. Tan, R. M. Dia, D. C. Streit, T. Lin, T. Q. Trinh, A. C. Han, P. H. Liu, P. D. Chow, and H. C. Yen, “94-GHz 0.1-μm T-gate low-noise pseudomorphic InGaAs HEMTs”, IEEE Trans. Electron Devices, vol. 11, pp. 585-587, 1990.
    [22]G. H. Jessen, R. Fitch, Jr., J. K. Gillespie, G. Via, A. Crespo, D. Langley, Daniel. J. Denninghoff, M. Trejo, and Eric. R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate Devices”, IEEE Trans. Electron Devices, vol. 53, pp. 2589-2597, 2007.
    [23]T. Mizutani, M. Ito, S. Kishmoto, and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation”, IEEE Trans. Electron Devices, vol. 28, pp. 549-551, 2007.
    [24]J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, “AlGaN/GaN HEMT with 300-GHz fmax”, IEEE ELECTRON DEVICE LETTERS, vol. 31, pp. 195-197, 2010.
    [25]K. Nummila, A. A. Ketterson, S. Caracci, J. Kolodzey, and I. Adesida, “Short-channel effects in sub-100 nm GaAs MESFETS”, IEEE Trans. Electron Devices, vol. 27, no. 17, pp. 1519-1521, 1991.
    [26]L. D. Nguyen, A. S. Brown, A. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs”, IEEE Trans. Electron Devices, vol. 39, pp. 1519-1521, 1992.
    [27]V. Kilchytska, A. Neve, L. Vancaillie, D. Levacq, S. Adriaensen, H. V. Meer, K. D. Meyer, C. Raynaud, M. Dehan, J. P. Raskin, and D. Flandre, “Influence of device engineering on the analog and rf performance of SOI MOSFETs”, IEEE Electron Device Lett., vol. 50, pp. 577-588, 2003.
    [28]F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si Substrate,” IEEE Electron Device Lett., vol. 31, pp. 111-113, 2010.
    [29]S. Karmalkar and U. K. Mishra, “Enhancement of breakdown Voltage in AlGaN/GaN high electron mobility transistors using a field Plate”, IEEE Electron transactions on Electron Devices, vol. 48, pp. 1515-1521, 2001.
    [30]H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field Plates”, IEEE Electron Device Lett., vol. 25, pp. 161-163, 2004.
    [31]Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility”, IEEE Electron Device Lett., vol. 31, pp. 183-185, 2010.
    第三章
    [1]P. E. Riley, “Plasma etching of aluminum metallizations for ultra large scale integrated circuits”, J. Electrochem. Soc., vol. 140, pp. 1518-1522, 1993.
    [2]S. K. Ghandhi, VLSI fabrication principles, John Wiley & Sons, pp. 635, 1994.
    [3]C. T. Lee, Y. J. Lin, and C. H. Lin, “Nanalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers”, J. Appl. Phys., vol. 92, pp. 3825-3829, 2002.
    [4]S. J. Lee and C. R. Crowell, “Parasitic source and drain resistance in high-electron-mobility transistor”, Solid-State Electron., vol. 28, pp. 659-668, 1985.
    [5]Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang, and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures”, Appl. Phys. Lett., vol. 71, pp. 1658-1660, 1997.
    [6]M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN”, Appl. Phys. Lett., vol. 64, pp. 1003-1005, 1994.
    [7]L. H. Huang and C. T. Lee, “Investigation analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation Method”, Journal of The Electrochemical Society, vol. 154, pp. 862-866, 2007.
    [8]Y. L. Chiou and C. T. Lee, “Band Alignment and performance im-provement mechanisms of Chlorine-Treated ZnO-gate AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistors”, IEEE Trans. Electron Devices, vol. 58, pp. 3869-3876, 2011.
    [9]C. T. Black, “Self-aligned self assembly of multi-nanowire silicon field effect transistors”, Applied Physics letters, vol. 87, pp. 163116-1-163116-3, 2005
    [10]C. H. Choi and C. J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control”, Nanotech., vol. 17, pp. 5326-5333, 2006.
    [11]J. D. Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography:Upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning”, Opt. Lett., vol. 34, pp. 1783-1785, 2009.
    第四章
    [1]L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method”, Journal of The Electrochemical Society, vol. 154, pp. 862-866, 2007.
    [2]S. Arulkumaran, T. Egaway, L. Selvaraj, and H. Ishikawa, “On the effects of gate-recess etching in current-collapse of different cap layers grown AlGaN/GaN high-electron-mobility-transistors”, Jpn. J. Appl. Phys., vol. 45, pp. 220-223, 2006.
    [3]C.T. Lee, H. Y. Lee, H. L. Huang, and C. Y. Tseng, “High-performance depletion-mode multiple-strip ZnO-based fin field-effect transistors”, IEEE Trans. Electron Devices, vol. 63, pp. 446-451, 2016.
    [4]H. Umezawa, K. Tsugawa, S. Yamanaka, D. Takeuchi, H. Okushi, and H. Kawarada, “High-performance diamond metal-semiconductor field-effect transistor with 1μm gate length”, Jpn. J. Appl. Phys., vol. 38, pp. 1222-1224, 1999.
    [5]Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “High breakdown voltage achieved on the AlGaN/GaN HEMTs with integrated slant field plates”, IEEE Trans. Electron Devices, vol. 27, pp. 713-715, 2016.
    [6]K. Shinohara, Y. Yamashita, I. Watanabe, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, “547-GHz fT In0.7Ga0.3As-In0.52Al0.48As HEMTs with reduced source and drain resistance”, IEEE Trans. Electron Devices, vol. 25, pp. 241-243, 2004.
    [7]J. H. Lee, H. S. Yoon, C. S. Park, and H. M. Park, “Ultra low noise characteristics of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with wide head T-shaped gate”, IEEE Trans. Electron Devices, vol. 16, pp. 271-273, 1995.
    []8R. J. Trew, D. S. Green, and J. B. Shealy, “AlGaN/GaN HFET Reliablity”, IEEE microwave magazine, vol. 07, pp. 116-127, 2009.

    無法下載圖示 校內:2021-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE