| 研究生: |
廖志豪 Liao, Chih-Hao |
|---|---|
| 論文名稱: |
面板組立製程期望配對良率模式之發展—考慮切割類型與投入批量 |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 面板組立 、期望良率 、產出管理 |
| 外文關鍵詞: | cell assembly, yield management |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在液晶螢幕之面板組立製程中,由於玻璃基板尺寸不斷地擴大,使產出管理愈形困難,其中良率與產出率最顯重要。面板組立製程係將電晶體陣列基板與彩色濾光片進行上下配對貼合,但是上下基板內的各個面板其良率不同且為隨機,只有在上下對應的面板都是好的,才能生產出良好的成品。為了提升製程之實際產出能量,可對基板作初步切割,再進行貼合以提高良率,但相對製程加工時間較長,可能亦會使產出率下降。同時,製程中切割的基板需放置於暫存區中,而此設施限制,亦影響到面板組立製程產出決策之複雜度。
本研究首先建構隨機模式以推導在不同切割類型與不同投入批量限制下,依據配對貼合時良窳分佈情形與其對應之順序統計量之聯合機率分配,發展期望配對良率模式。通常電晶體陣列基板與彩色濾光片之良率不同,故依據實際資料假設為不同之二項機率分配,進而分析不同切割型態之期望良率函數,以獲得投入批量對期望配對良率之影響。依據良率模型之分析結果,並考量各切割形態之製程加工時間後,本研究進而建立一有效產出模式,以衡量面板組立製程之有效產出。因此本研究之目標可歸納為發展期望產出良率估計模式,以及最大化組合配對下其期望之製程產出,同時考慮良率與製程加工時間,以決定最適之投入批量與最佳之切割類型。
本論文建立不同切割類型下之期望良率函數,其理論模式可一般化至更大型玻璃基板尺寸與不同之投入批量大小,故可應用於未來之製程管理上。從演算結果可發現若彩色濾光片良率小於電晶體陣列基板,則提升前者之良率,將使期望配對良率改善較顯著,且固定切割類型下,隨著生產投入批量之增加,期望配對良率會收斂至一上界。在最大化製程之有效產出下,製程產出率函數圖形將影響到最佳切割類型與投入批量之選擇,經由實驗亦可發現最佳解之變化,建立生產決策之經驗法則。
一、 中文部分
黃建中,「多廠區規劃與排程—以TFT-LCD廠為例」,國立清華大學工業工程與工程管理學系,碩士論文,民國九十二年六月。
王鵬森,「液晶顯示器良率配對方法之研究」,國立交通大學工業工程與管理學系,博士論文,民國九十三年六月。
二、 英文部分
Agnihothri, S. R., Kenett, R., 1995. The impact of defects on a process with rework. European Journal of Operational Research 80, 308-327.
Agnihothri, S., Lee, J. S., Kim, J., 2000. Lot sizing with random yields and tardiness costs. Computers & Operations Research 27, 437-459.
Aneja, Y. P., Kamoun, H., 1999. Scheduling of parts and robot activities in a two machine robotic cell. Computers & Operations Research 26, 297-312.
Arnold, B. C., Balakrishnan, N., Nagaraja, H. N., 1992. A First Course in Order Statistics, 1st ed. John Wiley & Sons, New York.
Bohn, R. E., Terwiesch, C., 1999. The economics of yield-driven processes. Journal of Operations Management 18, 41-59.
Breaux, L., Kolar, D., 1996. Automatic defect classification for effective yield management. Solid State Technology 39, 89-96.
Chelbi, A., Ait-Kadi, D., 2004. Analysis of production/inventory system with randomly failing production unit submitted to regular preventive maintenance. European Journal of Operational Research 156, 712-718.
Cunningham, J. A., 1990. The use and evaluation of yield models in integrated circuit manufacturing. IEEE Transactions on Semiconductor Manufacturing 3, 60–71.
Duenyas, I., Keblis, M. F., Pollock, S.M., 1997. Dynamic type mating. Management Science 43, 751-763.
Foley, R. D., Park, B. C., 2002. Optimal allocation of buffers and customers in a two-node cyclic network with multiple servers. Operations Research Letters 30, 19-24.
Gerchak, Y., Grosfeld-Nir, A., 1998. Multiple lot-sizing, and value of probabilistic information, in production to order of an uncertain size. International Journal of Production Economics 56-57, 191-197.
Grosfeld-Nir, A., Gerchak, Y., 2004. Multiple lot sizing in production to order with random yields: Review of recent advances. Annals of Operations Research 126, 43-69.
Guu, S. M., 1999. Properties of the multiple lot-sizing problem with rigid demand, general cost structures, and interrupted geometric yield. Operations Research Letters 25, 59-65.
Guu, S. M., Zhang, A. X., 2003. The finite multiple lot sizing problem with interrupted geometric yield and holding costs. European Journal of Operational Research 145, 635-644.
Hadjinicola, G. C., Soteriou, A. C., 2003. Reducing the cost of defects in multistage production systems: A budget allocation perspective. European Journal of Operational Research 145, 621-634.
Han, M. S., Park, D. J., 2002. Optimal buffer allocation of serial production lines with quality inspection machines. Computers & Industrial Engineering 42, 78-59.
Hemachandra, N., Eedupuganti, S. K., 2003. Performance analysis and buffer allocations in some open assembly systems. Computers & Operations Research 30, 695-704.
Jeong, B., Kim, S. W., Lee, Y. J., 2001. An assembly scheduler for TFT LCD manufacturing. Computers & Industrial Engineering 41, 37-58.
Jeong, K. C., Kim, Y. D., 2000. Heuristics for selecting machines and determining buffer capacities in assembly systems. Computers & Industrial Engineering 38, 341-360.
.
Ji, P., Sze, M. T., Lee, W. B., 2001. A genetic algorithm of determining cycle time for printed circuit board assembly lines. European Journal of Operational Research 128, 175-184.
Kirkavak, N., Dincer, C., 1999. The general behavior of pull production systems: The allocation problems. European Journal of Operational Research 119, 479-494.
Lee, S. D., Ho, S. H., 2002. Buffer sizing in manufacturing production systems with complex routings. International Journal of Computer Integrated Manufacturing 15, 440-452.
Liu, S., Moskowitz, H., Plante, R., Preckel, P. V., 2002. Product and process yield estimation with Gaussian quadrature (GQ) reduction: Improvements over the GQ full factorial approach. European Journal of Operational Research 140, 655-669.
Parlar, M., Perry, D., 1995. Analysis of a (Q, r, T) inventory policy with deterministic and random yields when future supply is uncertain. European Journal of Operational Research 84, 431-443.
Stamenkovic, Z., Stojadinovic, N., Dimitrijev, S., 1996. Modeling of integrated circuit yield loss mechanisms. IEEE Transactions on Semiconductor Manufacturing 9, 270–272.
Wang, Y., Gerchak, Y., 2000. Input control in a batch production system with lead times, due dates and random yields. European Journal of Operational Research 126, 371-385.
Yano, C. A., Lee, H. L., 1995. Lot sizing with random yields: A review. Operations Research 43, 311-334.