| 研究生: |
王莉雯 Wang, Li-Wen |
|---|---|
| 論文名稱: |
外消旋suprofen硫酯之動態動力分割製程開發 Development of the dynamic kinetic resolution process of racemic suprofen 2,2,2 trifluoroethyl thioester |
| 指導教授: |
蔡少偉
Tsai, Shau-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 動態動力分割 、中空纖維管 、脂肪分解酵素 |
| 外文關鍵詞: | lipase, dynamic kinetic resolution, hollow fiber, suprofen |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為生產單一光學藥物之重要性日益增加,所以本論文嘗試對非類固醇消炎藥(S)-suprofen之批次及半批次製程進行分析與模擬。
本文先依照前人之經驗擬定外消旋suprofen三氟乙硫酯動態動力分割之反應條件,進而對酵素水解、消旋以及自發性水解之反應參數作詳細探討,以利理論數值之偶合;分別採用固定化酵素Lipase MY以及三辛基胺作為水解及消旋觸媒,並測定產物suprofen於環己烷及不同pH值氫氧化鈉溶液之間的分配係數、於薄膜系統之質傳係數且探討添加三辛基胺對其質量傳送的影響。
結合中空纖維薄膜之優點,於有機相進行動態動力分割反應的同時,採用pH值11之氫氧化鈉溶液進行產物的萃取分離並提供作為反應物水的來源;實驗證明於固定時間內加入高濃度之氫氧化鈉及基質溶液可以開發(S)-suprofen之半批次製程,且與理論值比較獲得互相符合的結果。
As single enantiomer drugs become increasingly important, the purpose of this work is aimed to develop a theoretical model in predicting the production of a non-sterodial anti-inflammatory drug of (S)-suprofen operating in batch and semibatch modes.
A series of experiments were carried out to determine all kinetic parameters for the lipase-catalyzed hydrolysis and trioctylamine-catalyzed racemization. The distribution coefficients of suprofen between cyclohexan with or without adding trioctylamine and the aqueous sodium hydroxide solution of different pH values, and the mass transfer coefficient through a hollow fiber membrane were obtained.
Dynamic kinetic resolution of racemic suprofen 2,2,2-trifluorothioester in a semibatch reactor with in situ extraction of (S)-suprofen into an aqueous sodium hydroxide solution through a hollow fiber membrane was furthermore performed, and compared with the theoretical predictions.
Agranat I. and Caner H.: Intellectual property and chirality of drugs. DDT, 4, 313-321, 1999.
Carr P.W. and Bowers L.D.: Immobilized enzymes in analytical and clinical chemistry. John Wiley & Sons, 1982。
Cernia E., Palocci C. and Soro S.: The role of the reaction medium in lipase-catalyzed esterifications and transesterifications. CPL, 93, 157-168, 1998.
Collins A.N., Sheldrake G.N. and Crosby J.: Chirality in industry II. John Willey & Sons, 1997.
Crossley R.: Chirality and biological activity of drugs. CRC Press, 1995.
Ducret A., Trani M., Lortie R.: Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity. Enzyme Microb. Technol., 22, 212-216, 1998.
Ebbers E.J., Ariaans G.J., Houbiers J.P.M., Bruggink A. and Zwanenburg B.: Controlled racemization of optically active organic compounds: prospects for asymmetric transformation. Tetrahedron, 53, 9417-9476, 1997.
Eliel E.L. and Wilen S.H.: Stereochemistry of organic compounds. Wiley Interscience, 1993.
Faber K.: Biotransformations in organic chemistry. Springer, 2000.
Fersht A.: Structure and mechanism in protein science. Freeman, 1997.
Forrest S.: Genetic algorithms: principles of natural selection applied to computation. Science, 261, 872-878, 1993.
Gianfreda L., Marrucci G., Grizzuti N. and Greco G.: Acid phosphatase deactivation by a series mechanism. Biotechnol. Bioeng., 26, 518-527, 1984.
Godfrey T. and West S.: Industrial enzymology. Stockton press, 1996.
Goldberg D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, 1989.
Griebenow K. and Klibanov A.M.: On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc., 118, 11695-11700, 1996.
Hoq M.M., Yamane T. and Shimizu S.: Continuous synthesis of glycerides by lipase in a microporous memebrane bioreactor. JAOCS, 61, 776-781, 1984.
Hoq M.M., Yamane T. and Shimizu S.: Role of oleic acid solubilized in buffer-glycerol solution on adsorbed lipase during continuous hydrolysis of olive oil in a microporous hydrophobic membrane bioreactor. Enzyme Microb. Technol., 8, 236-240, 1986.
Houck C.R., Joines J. A. and Kay M.G.: A genetic algorithm for function optimization: a matlab implementation. http://www.ie.ncsu.edu/mirage/, 1997.
Huerta F.F., Minidis A.B.E. and Bäckvall J.E.: Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev., 30, 321-331, 2001.
Islam M.R., Mahdi J.G. and Bowen I.D.: Pharmacological importance of stereochemical resolution of enatiomeric drugs. Drug Safety, 17, 149-165, 1997.
Klibanov A.M.: Improving enzymes by using them in organic solvents. Nature, 409, 241-246, 2001.
Klibanov A.M.: What is remembered and why? Nature, 374, 596, 1995.
Koeller K.M. and Wong C.H.: Enzymes for chemical synthesis. Nature, 409, 232-240, 2001.
Kubo A., Kubota H., Takahashi M. and Nunami K.I.: Dynamic kinetic resolution utilizing 2-oxoimidazolidine-4-carboxylate as a chiral auxiliary: stereoselective alkylation of -bromo amides with malonic ester enolates. J. Org. Chem., 62, 5830-5837, 1997.
Kubota H., Kubo A., Takahashi M., Shimizu R., Da-te T., Okamura K. and Nunami K.I.: Stereospecific amination by dynamic kinetic resolution utilizing 2-oxoimidazolidine-4-carboxylate as a novel chiral auxiliary. J. Org. Chem., 60, 6776-6784, 1995.
Lewis A.J., Furst D.E.: Nonsteroidal anti-inflammatory drugs. Marcel Dekker, Inc. 1987.
Panke S. and Wubbolts M.G.: Enzyme technology and bioprocess engineering. Curr. Opin. Biotech., 13, 111-116, 2002.
Patel R.N.: Stereoselective biocatalysis. Dekker, Inc., 2000.
Pesti J.A., Yin J., Zhang L.H. and Anzalone L.: Reversible Michael reaction- enzymatic hydrolysis: a new variant of dynamic resolution. J. Am. Chem. Soc., 123, 11075-11076, 2001.
Prazeres D.M.F. and Cabral J.M.S.: Enzymatic membrane bioreactors and their applications. Enzyme Microb. Technol., 16, 738-750, 1994.
Reetz M.T.: Lipases as practical biocatalysts. Curr. Opin. Chem. Biol., 6, 145-150, 2002.
Schmid R.D. and Verger R.: Lipases: interfacial enzymes with attractive applications. Angew. Chem. Int. Ed., 37, 1608-1633, 1998.
Sharma R., Chisti Y. and Banerjee U.C.: Production, purification, characterization and applications of lipases. Biotechnology Advances, 19, 627-662, 2001.
Sirkar K.K., Shanbhag P.V. and Kovvali A.S.: Membrane in a reactor: a functional perspective. Ind. Eng. Chem. Res., 38, 3715-3737, 1999.
Srinivas N.R., Barbhaiya R.H., Midha K.K.: Enatiomeric drug development: issues, considerations, and regulatory requirements. Journal of pharmaceutical sciences, 90, 1205-1215, 2001.
Strauss U.T., Felfer U. and Faber K.: Biocatalytic transformation of racemates into chiral building blocks in 100 ﹪chemical yield and 100 ﹪enantiomeric excess. Tetrahedron: Asymmetry, 10, 107-117, 1999.
Tan D.S., Günter M.M. and Drueckhammer D.G.: Enzymatic resolution coupled with substrate racemization using a thioester substrate. J. Am. Chem. Soc., 117, 9093-9094, 1995.
Theil F.: Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron, 56, 2905-2919, 2000.
Tomazic S.J.: Protein stabilization. Biocatalysts for industry, Plenum Press, 1991.
Um P.J. and Drueckhammer D.G.: Dynamic enzymatic resolution of thioesters. J. Am. Chem. Soc., 120, 5605-5610, 1998.
Ward R.S.: Dynamic kinetic resolution. Tetrahedron: Asymmetry, 6, 1475-1490, 1995.
Welty J.R., Wicks C.E. and Wilson R.E.: Fundamentals of momentum, heat and mass transfer. John Wiley & Sons, 1984.
Zaks A. and Klibanov A.M.: Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci., 82, 3192-3196, 1985.
Zaks A.: Enzymes in organic solvents. Biocatalysis for industry, Plenum Press, New York, 161-178. 1991.
呂居勳:外消旋naproxen硫紙之動態動力分割並配合薄膜進行(S)-naproxen萃取分離。國立成功大學碩士論文,2000。
林春男:有機溶劑中利用脂肪分解酵素進行外消旋suprofen硫紙之水解動態動力分割。國立成功大學碩士論文,1999。
邱世宜:基因演算法在雙次抽樣計劃最佳化設計上之應用。國立成功大學碩士論文,2001。
張春生:有機溶劑中利用脂肪酵素鏡像選擇合成(S)-naproxen酯類前驅藥及動態動力分割(S)-naproxen。國立成功大學博士論文,1998。
陳東煌和黃定加:薄膜反應器。化工,44卷,4期,75-91,1997。
陳建清:環己烷中利用固定化酵素為觸媒進行(S)形ibuprofen酯類前驅藥之合成。國立成功大學碩士論文,1997。
陳昱旻:非類固醇抗發炎藥之腸胃道副作用及處方型態分析。國立成功大學碩士論文,1996。
黃定加:新編物理化學實驗。高立圖書有限公司,1990。
黃俊銘:數值方法-使用Matlab程式語言。全華科技圖書股份有限公司,2001。
劉英俊,汪金追:酵素工程。中央圖書出版社,1987。
蔡少偉:(S)-naproxen製程技術發展。化工資訊,33-39,1999年11月。
蔡政峰:求解有限資源專業排程問題最佳化之研究-以基因演算法求解。國立成功大學碩士論文,2001。