| 研究生: |
林雨欣 Lin, Yu-Sin |
|---|---|
| 論文名稱: |
具溝槽之波紋形微混合器中的流體混合 Mixing of fluids in a corrugated micromixer with grooves |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 微混合器 、溝槽 、波紋形流道 、混合效率 |
| 外文關鍵詞: | Micromixer, groove, corrugated channel, mixing efficiency |
| 相關次數: | 點閱:81 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種具溝槽的波紋形微混合器,並探討改變其波紋傾角、溝槽之夾角,及改變溝槽排列位置對混合的影響。本研究中,使用數值模擬軟體CFDRC模擬微混合器中流體的混合現象。製程中,以光微影技術製作微混合器的母模,再以PDMS翻模,且與載玻片接合以完成微混合器之製作,並使用雷射共軛焦顯微鏡觀測微混合器中流體的流動情況。本文結果顯示:(1)在波紋傾角範圍為0˚至60˚間,波紋傾角為45˚的流道具有不錯的混合效果及不高的壓降;(2)具交錯鯡魚骨式溝槽的微混合器其混合效果優於具斜溝槽的微混合器,且無論是置入波紋形流道或是直型流道結果皆相同;(3)具交錯鯡魚骨式溝槽之波紋形微混合器的混合效果優於波紋形微混合器與具交錯鯡魚骨式溝槽之直型微混合器,且此前者之優勢隨著雷諾數增加而上升;(4)若將溝槽之垂直壁面與其相近的波紋形流道之垂直壁面重合,可進一步的促進混合。
In this works, we propose the corrugated micromixers with grooves and investigate the mixing behavior of fluids in the micromixers. The effects of the corrugation angle, the groove angle and the arrangement of grooves on the degree of mixing are investigated. Besides, we compare the performance of the corrugated micromixers with staggered herringbone grooves and that of the straight micromixers with staggered herringbone grooves by numerical simulation and experiment. This work uses the software, CFDRC, to simulate the fluid flow and diffusion in the micromixers. In fabrication, the SU-8 thick film photoresist is used to fabricate the mold of the micromixers by photolitography. Then, replicating the mold by PDMS and bonding the mold and a cover glass to complete the fabrication of a micromixer. The concentration distribution of Rhodamine B in the flow is observed by a laser confocal spectral microscopy. Comparison of the images of mixing fluids obtained by experiment and by simulation show reasonable agreement. The results obtained show the following trends. (i) Among the corrugated channel with a corrugation angle from 0˚ to 60˚, the corrugated channel with a corrugation angle equal to 45˚ generates good fluids mixing and low pressure drop. (ii) Whether the grooves are placed in a corrugated or a straight channel, the mixing of fluids in the micromixer with staggered herringbone grooves is better than that in the micromixer with slanted grooves.(iii) The mixing efficiency of the corrugated micromixers with staggered herringbone grooves is better than that of the corrugated micromixers without grooves and that of the straight micromixers with the staggered herringbone grooves, especially for the case with a large Reynold number. (iv) If we make the location of the vertical wall of grooves close to the vetrical wall of the corrugated channel coincide with the vertical wall of the corrugated channel, then the mixing efficiency of the micromixer with such a groove arrangement is much better than that of the mictomixer with other groove arrangement.
1. A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis system: a novel concept for chenical sensing,” Sens. Actuators, B, Vol. 1, pp. 244-248, 1990.
2. V. Vivek, Y. Zeng, E. S. Kim, “Novel acoustic-wave micromixer,” Proc. IEEE Micro Mechanical Systems (MEMS), pp 668-73, 2000.
3. C. Y. Lee, G. B. Lee, L. M. Fu, K. H. Lee, R. J. Yang.“Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect,” J. Micromech. Microeng., Vol. 14, pp. 1390-1398, 2004.
4. K. Y. Tung, J. T. Yang, “Analysis of a chaotic micromixer by novel methods of particle tranking and FRET,” Microfluid. Nanofluid., Vol. 5, pp. 749-759, 2008.
5. A. M. Guzman, C. H. Amon, “Dynamical flow characterization of transitional and chaotic regimes in converging-diverging channels,” J. Fluid Mech., Vol. 321, pp. 25-57, 1996.
6. V. Mengeaud, J. Josserand, H. H. Girault, “Mixing processes in a zigzag microchannel: finite element simulations and optical study,” Anal. Chem., Vol. 74, pp. 4279-4286, 2002.
7. F. Jiang, K. S. Drese, S. Hardt, M. Küpper, F. Schönfeld, “Helical flows and chaotic mixing in curved micro channels,” AlChE J., Vol. 50, pp. 2297-2305, 2004.
8. H. M. Xia, S. Y. M. Wan, C. Shu, Y. T. Chew, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, Vol. 5, pp. 748-755, 2005.
9. X. Xuan, D. Li, “Particle motions in low-Reynolds number pressure-driven flows through converging–diverging microchannels,” J. Micromech. Microeng., Vol. 16, pp. 62-69, 2006.
10. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
11. A. D. Stroock, S. K. W. Dertinger, G. M.Whitesides, A. Ajdari, “Patterning flows using grooved surfaces,” Anal. Chem., Vol. 74, pp. 5306-5312, 2002.
12. D. S. Kim, S. W. Lee, T. H. Kwon, S. S. Lee, “A barrier embedded chaotic micromixer,” J. Micromech. Microeng., Vol. 14, pp. 798-805, 2004.
13. F. Schönfeld, S. Hardt, “Simulation of helical flows in microchannels,” AlChE J., Vol. 50, pp. 771-778, 2004.
14. 謝崇民, “凹槽結構管道微混合器流場分析,” 國立交通大學動力機械工程研究所碩士論文, 2005.
15. 王儷霖, “交叉重疊式凹槽微混合器之設計與流場分析,” 國立清華大學動力機械工程研究所博士論文, 2006.
16. E. A. M. Elshafei, M. M. Award, E. E. Negiry, A. G. Ali, “Heat transfer and pressure drop in corrugated channels,” Energy, Vol. 35, pp. 101-110, 2010.
17. H. Aref, “Stirring by chaotic advection,” J. Fluid Mech., Vol. 143, pp. 1-21, 1984.
18. S. A. Rani, B. Pitts, P. S. Stewart, “Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy,” Antimicrob. Agents Chemother., Vol. 49, pp. 728-732, 2005.
19. J. Boss, “Evaluation of the homogeneity degree of a mixture,” Bulk Solids Handl., Vol. 6, pp. 1207-1215, 1986.
20. C. P. Jen, C. Y. Wu, Y. C. Lin, C. Y. Wu, “Design and simulation of the micromixer with chaotic advection in twisted microchannels,” Lab Chip, Vol. 3, pp. 77-81, 2003.