簡易檢索 / 詳目顯示

研究生: 林育聖
Lin, Yu-Sheng
論文名稱: 60-GHz與26-/77-GHz 雙頻帶CMOS被動元件及主動濾波器之研製
Research on 60- and 26-/77-GHz Dual-band CMOS Passive Components and Active Filters
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 主動濾波器平衡器枝幹耦合器
外文關鍵詞: active filter, branch-line coupler, balun
相關次數: 點閱:160下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製60-GHz與26-/77-GHz 雙頻帶CMOS被動元件及主動濾波器之研製。第一部分為利用TSMC 0.18-um CMOS製程研製被動元件,其中包含60-GHz CMOS 威金森平衡器、20-50-GHz CMOS多層變壓器式馬遜平衡器以及26-/77-GHz雙頻帶CMOS之枝幹耦合器。第二部份則分為利用TSMC 0.18-um和0.13-um CMOS製程研製26-GHz和60-GHz主動濾波器。
    首先,威金森平衡器採用威金森功率分配器架構,並將此架構利用傳輸線作相位的偏移,使原本輸出端為同相位的功率分配器改變成具有180°的相位差,達到具有高隔離度與相位平衡的優點。量測結果在57-64 GHz內,振幅不平衡小於1 dB、相位不平衡小於± 5°。多層變壓器式馬遜平衡器採用馬遜平衡器架構並利用變壓器取代平行微帶線耦合器,達到寬頻微小化的平衡器。量測結果在20-50 GHz內,振幅不平衡小於1.1 dB、相位不平衡小於± 7.5°,晶片面積為0.1 × 0.14 mm2。雙頻帶枝幹耦合器可利用開路殘帶控制操作頻率,選用26和77 GHz主要應用於汽車防撞雷達的部份。量測結果在26 GHz時,、振幅大小不平衡小於± 0.46 dB、相位大小不平衡小於90 ± 6.2°。在77 GHz時,由於110-GHz之PNA無法提供四埠量測。在模擬結果振幅大小不平衡小於± 1.1 dB、相位大小不平衡小於90 ± 4°。
    第二部分採用NMOS交錯耦合對提供負電阻製作主動濾波器,量測結果在供應電壓1.2 V,消耗功率為9.78 mW下,在頻率24.7-29.3 GHz內,反射損耗階大於8.8 dB、嵌入損耗小於-2.2 dB、雜訊指數為10.61 dB、P1dB為-1.5 dBm。在60-GHz主動濾波器模擬結果在供應電壓0.9 V,消耗功率為9.09 mW下,在頻率57-64 GHz內,反射損耗階大於13 dB、嵌入損耗小於1.2 dB、雜訊指數為9.2 dB、P1dB為-0.5 dBm。

    This thesis presents the research on 60-GHz and 26-/77-GHz dual-band CMOS passive elements and active filters. The designed passive elements are fabricated with TSMC 0.18-um CMOS process. A 60-GHz CMOS Wilkinson balun, 20-50-GHz CMOS multi-layer transformer-type Marchand balun, 26-/77-GHz CMOS dual-band branch-line coupler are presented. The second part of the designed 26-GHz and 60-GHz active filters are fabricated with TSMC 0.18-um and 0.13-um the CMOS process, respectively.

    第一章 緒論 1 1.1 研究背景 1 1.2 60-GHz WPAN研究動機與應用 2 1.3 汽車雷達研究動機與應用 4 1.4 論文架構 6 第二章 毫米波CMOS之平衡器 9 2.1 平衡器應用與介紹 9 2.1.1 集總元件之平衡器 10 2.1.2 環形耦合器 10 2.2 60-GHz CMOS 威金森平衡器 11 2.2.1 Wilkinson功率分波器與平衡器結構原理分析 11 2.2.2 電路佈局與設計流程 16 2.2.3 模擬與量測結果 19 2.2.4 結果討論 23 2.3 20-50-GHz CMOS多層變壓器式馬遜平衡器 24 2.3.1 多層變壓器式馬遜平衡器結構原理分析 24 2.3.2 電路佈局與設計流程 35 2.3.3 模擬與量測結果 36 2.3.4 結果討論 39 第三章 26-/77-GHz雙頻帶CMOS之枝幹耦合器 41 3.1 耦合器應用與介紹 41 3.2 雙頻帶枝幹耦合器之結構原理分析 42 3.2.1 π型電路縮減與產生雙頻帶之方式 43 3.3 電路佈局與設計流程 46 3.4 模擬與量測結果 50 3.5 結果討論 53 第四章 26-及60-GHz主動帶通濾波器 55 4.1 帶通濾波器介紹 55 4.2 主動濾波器相關研究發展與設計理論 59 4.2.1 負電阻電路設計 59 4.2.2 二分之一波長共振器設計 66 4.3 26-GHz CMOS主動帶通濾波器 68 4.3.1 電路佈局與設計流程 68 4.3.2 模擬與量測結果 71 4.3.3 結果討論 74 4.4 60-GHz CMOS主動帶通濾波器 75 4.4.1 電路佈局與設計流程 75 4.4.2 模擬與量測結果 77 4.4.3 結果討論 79 第五章 結論 81 參考文獻 83

    [1]A. Bourdoux, J. Nsenga, W. Van Thillo, F. Horlin and L. Van der Perre, “Air Interface and Physical Layer Techniques for 60 GHz WPANs,” Communications and Vehicular Technology Symp., pp.112-146, Nov. 2006.
    [2]http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
    [3]http://www.dailywireless.org/2006/11/13/more-70ghz-radios/
    [4]J.-S. Lin, H.-S. Yang, Y.-T. Lee, S. Kim, K.-S. Seo and S. Nam, “A 77 GHz CPW balun using Wilkinson structure,” IEEE 34th European Microwave Conference, Amsterdam, 2004.
    [5]J.-S. Lin, H.-S. Yang, Y.-T. Lee, S. Kim, K.-S. Seo and S. Nam, “E-band Wilkinson balun using CPW MMIC technology,” IEE Electronics letters, vol. 40, no. 14, Jul. 2004.
    [6]W.-K.-W. Ali and S.-H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates,” in Proc. IEEE AP-S Int. Symp., vol. 2, pp. 676-679, Jun. 1998.
    [7]N. Marchand, “Transmission-Line Conversion Transformers,” Electronics, vol. 17, no. 12, pp. 142-145, Dec. 1944.
    [8]張盛富、戴明鳳,無線通信之射頻被動電路設計,全華科技圖書股份有限公司,民國八十七年。
    [9]S.-C. Tseng, C. Meng, C.-H. Chang, C.-K. Wu and G.-W. Huang, “Monolithic Broadband Gilbert Micromixer With an Integrated Marchand Balun Using Standard Silicon IC Process,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, Dec. 2006.
    [10]I. Bahl, Lumped Element for RF and Microwave Circuit, Artech House, 2003.
    [11]R. Mongia, I. Bahl and P. Bhartia, RF and Microwave Coupled-Line Circuit, Artech House, 1999.
    [12]J.-R. Long, “Monolithic Transformers for Silicon RF IC Design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, Sep. 2000.
    [13]K.-S. Ang and I.-D. Robertson, “Analysis and Design of Impedance Transforming Planar Marchand Baluns,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, Feb. 2001.
    [14]P.-S. Wu, C.-H. Wang, T.-W. Huang and H. Wnag, “Compact and Broad-Band Milimeter-Wave Monolithic Transformer Balanced Mixer,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, Oct. 2005.
    [15]J.-X. Liu, C.-Y. Hus, H.-R. Chuang and C.-Y. Chen, “A 60-GHz Millimeter-wave CMOS Marchand Balun,” in IEEE RFIC Symp., Honolulu, Hawaii, 2007.
    [16]K.-K. M. Cheng and F.-L. Wong, “A novel Approach to the Design and Implementation of Dual-Band Compact Planar 90° Branch-Line Coupler,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, Nov. 2004.
    [17]I.-H. Lin, C. Caloz and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in IEEE MTT-S Int. Microwave Symp. Dig., vol.1, June 2003.
    [18]F.-L. Wong and K.-K. M. Cheng, “A novel planar branch-line coupler design for dual-band applications,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2004.
    [19]B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [20]P. Madsen, J.-H. Mikkelsen, J.-C. Lindof and T. Larsen, “An RF CMOS Q-enhance LC resonator,” in Proc. IEEE Norchip Conf., Nov. 2004.
    [21]C.-Y. Chang and T. Itoh, “Microwave active filters based on coupled negative resistance method,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, Decv. 1990.
    [22]M. Ito, K. Maruhashi, S. Kishimoto and K. Ohata, “60-GHz-Band Coplanar MMIC Active Filter,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, Mar. 2004.
    [23]C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and Johnsea Chen, “CMOS Active Bandpass Filter Using Compacted Synthetic Quasi-TEM Lines at C-Band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, Dec. 2006.
    [24]K.-K. Huang, M.-J. Chiang, and C.-K. C. Tzuang, “A 3.3 mW K-Band 0.18-μm 1P6M CMOS Active Bandpass Filter Using Complementary Current-Reuse Pair,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, Feb. 2008.
    [25]C. Rauscher, “Microwave active filters based on transversal and recursive principles,” IEEE Trans. Microw. Theory Tech., vol. 33, Dec. 1985.
    [26]M. Danestig, H. Johansson, A. Ouacha and S. Rudner, “Low-noise active recursive MMIC filters,” in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, June 1997.
    [27]R. R. Bonetti, A. E. Williams, T. Duong, R. Gupta, and R. Mott, “An MMIC active filter with 60-dB rejection,” in IEEE MTT-S Int. Microwave Symp. Dig., Albuquerque, NM, June 1992.
    [28]B.-P. Hopf, I. Wolff and M. Guglielmi, “Coplanar MMIC active bandpass filters using negative resistance circuits,” IEEE Trans. Microw. Theory Tech., vol. 42, Dec. 1994.
    [29]J. Vindevoghel and P. Descamps, “Narrowband active GaAs MMIC filters in K-band,” in Proc. Eur. Microwave Conf., vol. 1, Paris, France, Oct. 2000.
    [30]D. K. Asams and R. Y. C. Ho, “Active filters for UHF and microwave frequencies,” IEEE Trans. Microw. Theory Tech., vol. 17, Sep. 1969.
    [31]U. Karacaoglu and I.-D. Robertson, “MMIC active bnadpass filters using varactor-tuned negative resistance elements,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, Dec. 1995.
    [32]B. Razavi, Design of Analogy CMOS Integrated Circuits, McGraw-Hill, 2005.
    [33]D. M. Pozar, Microwave Engineering, Wiley 3rd ed, 2005.
    [34]K.-W. Fan, C.-C. Weng, Z.-M. Tsai, H. Wang and S.-K. Jeng, “K-Band MMIC Active Band-Pass Filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1, Jan. 2005.

    下載圖示 校內:2010-08-20公開
    校外:2010-08-20公開
    QR CODE