| 研究生: |
李奕臻 Lee, Yi-Jhen |
|---|---|
| 論文名稱: |
生物可分解聚乳酸在三成分混摻系統之結晶形貌 Crystalline Morphology of Biodegradable Poly(L-lactic acid) Crystallized in a Ternary Blend |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 左式聚乳酸 、聚乙二醇 、聚甲基丙烯酸甲酯 、環帶狀球晶 、樹枝狀球晶 |
| 外文關鍵詞: | poly(L-lactic acid), poly(ethylene oxide), poly(methyl methacrylate), ring-banded spherulite, dendritic spherulite |
| 相關次數: | 點閱:52 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用偏光顯微鏡(POM)、電子顯微鏡(SEM)、原子力顯微鏡(AFM)
及廣角X繞射儀(WAXD)進行分析,透過加入PEO 及aPMMA 之高分子,使PLLA 之結晶能更清楚的被觀察,選擇PLLA/PEO/aPMMA (80/10/10)之混摻系統進行球晶形貌的探討。在此系統下,高分子結晶隨著溫度的改變而從環帶狀球晶轉變成樹枝狀球晶。在Tc = 115 °C 下,球晶為環帶狀球晶,在Tc = 130 °C為樹枝狀球晶,而在Tc = 120 °C 及Tc = 125 °C 下,則為過渡帶,球晶呈現環帶狀及樹枝狀並存的狀態和出現機率極低的六角形球晶。以POM 先進行形貌及birefringence 的觀察並記錄其生長的過程,再以AFM 和SEM 進行上表面的觀察,而內部晶板則用SEM 來觀察,結合上表面以及斷截面的結果,推測環帶狀球晶及樹枝狀球晶的生長機制。環帶狀球晶開始成長的方式分為同心圓及螺旋型兩種,而周圍環帶的斷截面觀察結果並沒有發現晶板扭轉的現象,同樣的對樹枝狀球晶做上表面及斷截面的觀察,樹枝狀球晶一開始是以sheaf-like的晶板開始向外成長,由主幹及枝幹組成整個樹枝狀球晶。為了瞭解兩種球晶的相異處,以WAXD 探討其晶格上的相異,以in-situ POM 觀察結果,分析兩種球晶之結晶動力學上的差異。藉由本實驗,可以更進一步知道環帶狀球晶及樹枝狀球晶之間的差別,並且以晶體內部晶板排列來推測其成長機制,用以佐證環帶狀球晶並不是傳統觀念的連續晶板扭轉所造成。
Morphology of PLLA/PEO/aPMMA blend is investigated by polarized optical microscopy (POM), scanning electron microscopy (SEM), atomic-force microscopy (AFM), and wide
angle X-ray diffraction (WAXD). In PLLA/PEO/aPMMA (80/10/10) blend, the morphology varies as crystallization temperature changes. Ring-banded spherulite appears at Tc = 115 °C, while dendritic spherulite grows at Tc = 130 °C. In order to reveal the
difference between these two kinds of spherulites in PLLA/PEO/aPMMA blend, top and fractured surfaces are observed and analyzed. Interior lamellar assembly affects the appearance of top surface as well as birefringence of the spherulite. The results show that lamellar assembly in ring-banded sphrulite is not arranged in continuous twisting lamellae but formed by fiber-like lamellae growing upwards and downwards periodically. Furthermore, by WAXD and in-situ POM observation results, the difference between ring-banded and dendritic spherulite has nothing to do with crystal lattice but has something to do with crystallization kinetics. Lastly, the possible mechanisms have been discussed for these two kinds of spherulites.
[1] J. P. Penning, H. Dijkstra, and A. J. Pennings, "Preparation and properties of absorbable fibres from l-lactide copolymers," Polymer, vol. 34, pp. 942-951, 1993.
[2] A.-C. Albertsson and I. K. Varma, "Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications," Biomacromolecules, vol.
4, pp. 1466-1486, 2003/11/01 2003.
[3] T. Kabe, T. Sato, K.-i. Kasuya, T. Hikima, M. Takata, and T. Iwata, "Transition of spherulite morphology in a crystalline/crystalline binary blend of biodegradable
microbial polyesters," Polymer, vol. 55, pp. 271-277, 2014.
[4] C. Tu, E. Woo, and G. Lugito, "Structured growth from sheaf-like nuclei to highly asymmetric morphology in poly (nonamethylene terephthalate)," RSC Advances,
vol. 7, pp. 47614-47618, 2017.
[5] G. Lugito, E. M. Woo, and S.-M. Chang, "Periodic extinction bands composed of all flat-on lamellae in poly(dodecamethylene terephthalate) thin films crystallized at high temperatures," Journal of Polymer Science Part B: Polymer Physics, vol. 55, pp.
601-611, 2017.
[6] A. G. Shtukenberg, J. Freudenthal, and B. Kahr, "Reversible twisting during helical hippuric acid crystal growth," J Am Chem Soc, vol. 132, pp. 9341-9, Jul 14 2010.
[7] E. Gunn, R. Sours, J. B. Benedict, W. Kaminsky, and B. Kahr, "Mesoscale chiroptics of rhythmic precipitates," J Am Chem Soc, vol. 128, pp. 14234-5, Nov 8 2006.
[8] A. Shtukenberg, J. Freundenthal, E. Gunn, L. Yu, and B. Kahr, "Glass-Crystal Growth Mode for Testosterone Propionate," Crystal Growth & Design, vol. 11, pp.
4458-4462, 2011.
[9] Y. Oaki and H. Imai, "Amplification of chirality from molecules into morphology of crystals through molecular recognition," J Am Chem Soc, vol. 126, pp. 9271-5, Aug
4 2004.
[10] A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp, R. Sours, E. Rosseeva, and B. Kahr, "Bernauer's bands," Chemphyschem, vol. 12, pp. 1558-71, Jun 6 2011.
[11] H. D. Keith and F. J. Padden, "Banding in Polyethylene and Other Spherulites," Macromolecules, vol. 29, pp. 7776-7786, 1996/01/01 1996.
[12] H. D. Keith and F. J. Padden, "The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation," Journal of Polymer Science, vol. 39, pp. 101-122,
1959.
[13] H. D. Keith and F. J. Padden, "The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites," Journal of Polymer Science, vol. 39, pp. 123-138, 1959.
[14] E. Woo, G. Lugito, and S. Chang, "Three-dimensional interior analyses on periodically banded spherulites of poly (dodecamethylene terephthalate)," CrystEngComm, vol. 20, pp. 1935-1944, 2018.
[15] M.-S. Lee and E. M. Woo, "Systematic probing into periodic lamellar assembly via induced cracks in crystallized polyesters," Polymer, vol. 166, pp. 88-97, 2019.
[16] E. M. Woo, G. Lugito, and C.-E. Yang, "Analysis of crystal assembly in banded spherulites of phthalic acid upon solvent evaporation," CrystEngComm, vol. 18, pp.
977-985, 2016.
[17] G. Lugito and E. M. Woo, "Interior Lamellar Assembly in Correlation to Top-Surface Banding in Crystallized Poly(ethylene adipate)," Crystal Growth & Design, vol. 14, pp. 4929-4936, 2014.
[18] G. Lugito, C. C. Su, Y.-H. Wang, and E. M. Woo, "Nano-assembly of intertwining lamellae of opposite bending senses in poly(ethylene oxide) co-crystallizing with poly(p-vinyl phenol)," Journal of Polymer Research, vol. 24, 2017.
[19] N. Siti, E. M. Woo, Y. T. Yeh, F. Luo, and V. Katiyar, "Lamellae Assembly in Dendritic Spherulites of Poly(l-lactic Acid) Crystallized with Poly(p-Vinyl Phenol)," Polymers (Basel), vol. 10, May 18 2018.
[20] Y.-T. Yeh and E. M. Woo, "Anatomy into Interior Lamellar Assembly in Nuclei-Dependent Diversified Morphologies of Poly(l-lactic acid)," Macromolecules,
vol. 51, pp. 7722-7733, 2018.
[21] V. Ferreiro, J. F. Douglas, J. Warren, and A. Karim, "Growth pulsations in symmetric dendritic crystallization in thin polymer blend films," Phys Rev E Stat Nonlin Soft
Matter Phys, vol. 65, p. 051606, May 2002.
[22] J.-U. Sommer and G. Reiter, "Crystallization in ultra-thin polymer films," Thermochimica Acta, vol. 432, pp. 135-147, 2005.
[23] K. C. Yen and E. M. Woo, "Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin," Polymer Bulletin, vol. 62, pp. 225-235, 2008.
[24] Y.-F. Chen and E. M. Woo, "Growth regimes and spherulites in thin-film poly(ɛ-caprolactone) with amorphous polymers," Colloid and Polymer Science, vol.
286, pp. 917-926, 2008.
[25] G. Lugito and E. M. Woo, "Asymmetric Growth of Co-Crystallized Nano- and Micrometer-Sized Lamellae to Janus-Faced Spherulites in Poly(l-lactic acid) withAmorphous Poly(methyl methacrylate)," Crystal Growth & Design, vol. 17, pp. 5034-5037, 2017.
[26] E. M. Woo, G. Lugito, J.-H. Tsai, and A. J. Müller, "Hierarchically Diminishing Chirality Effects on Lamellar Assembly in Spherulites Comprising Chiral Polymers,"
Macromolecules, vol. 49, pp. 2698-2708, 2016.
[27] H.-L. Chen, L.-J. Li, W.-C. Ou-Yang, J. C. Hwang, and W.-Y. Wong, "Spherulitic Crystallization Behavior of Poly(ε-caprolactone) with a Wide Range of Molecular
Weight," Macromolecules, vol. 30, pp. 1718-1722, 1997.
[28] M. V. R. Velasco, T. C. d. S. Dias, A. Z. d. Freitas, N. D. V. Júnior, C. A. S. d. O. Pinto, T.
M. Kaneko, and A. R. Baby, "Hair fiber characteristics and methods to evaluate hair physical and mechanical properties," Brazilian Journal of pharmaceutical sciences, vol. 45, pp. 153-162, 2009.
[29] wool fiber. Available: https://oecotextiles.wordpress.com/tag/organic-wool/