| 研究生: |
林江諭 Lin, Chiang-Yu |
|---|---|
| 論文名稱: |
微壓電感測器系統於咬合力量測之探討 Investigation of Piezoelectric Sensor System in Occlusive Force Measurement |
| 指導教授: |
張志涵
Chang, Chih-Han 林哲信 Lin, Che-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 電荷放大器 、咬合力 、有限元素法 、微機電製程 、壓電陶瓷 |
| 外文關鍵詞: | Charge amplifier, Bite force, Micro-Electro-Mechanical Systems (MEMS), Finite Element Method (FEM), Piezoelectric ceramics (PZT) |
| 相關次數: | 點閱:103 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牙齒主要功能之一為提供力量以咀嚼食物,故有效順暢地將力量由牙齒傳遞到食物上,是力量於齒冠分佈的重要目標。但現階段牙科生物力學之研究中,所量測到之牙齒力量大小皆僅量測咬合力之合力,尚無量測方法來量測咬合力或咀嚼時力量在牙冠面上之分布情形。
故本研究目的為利用壓電陶瓷試片來發展一套微型力量感測器,用以量測咬合力在牙冠面上之分布情形。研究中利用微機電製程技術,在厚度為150微米之銅箔上,製作對應壓電陶瓷片規格之電極及訊號傳輸線路,來克服壓電感測器之材料脆性,並提高壓電訊號之傳遞,另外利用電荷放大器來擷取壓電陶瓷試片受負荷時產生的電荷訊號,並將組裝完成之壓電陶瓷試片、訊號傳遞線與電荷放大器連接之系統在材料試驗機上進行動態校正測試,來探討所採用之壓電材料的感測靈敏度特性,並利用有限元素法與實際實驗所觀察到的材料特性,進行系統之基本定性探討。
由實驗與模擬之初步結果得知,壓電訊號僅與受壓力量大小有關,不會因受壓面積之大小差異而造成訊號有明顯之差異。故增加試片數量及縮小試片尺寸,為系統偵測分佈力之必要條件。實驗過程並發現利用預壓之方式,可有效改善訊號偏移之現象,若同時再採取動態修正之運算方式,以進行數據之運算處理,現階段系統可承受之感測力量大小為400N左右,其感測靈敏度之組內差異在1%~3%,且用校正曲線進行初步測試,其誤差約為2%。
One of the important functions of tooth is to provide force for food chewing. Therefore how to distribute the force on the crown in order to smoothly and effectively transmit the bite force from the tooth to the food would be an important issue. Currently, in the research of dental biomechanics, only the resultant occlusive force was measured quantitatively. The distribution of bite force on the tooth crown during biting or chewing is still unclear. The purpose of this study was to create a micro-piezoelectric force sensor system for the measuring of the distributed bite force on the tooth crown. The electrode and micro-cable system made from 150μm-thick copper foil with micro-electro-mechanical system were used to connect and transmission of piezoelectric signal from the sensor and overcome the possible brittle fracture of the piezoelectric ceramic material (PZT-5A) during loading. The piezoelectric charge generated from PZT-5A was measured with a charge amplifier (type 5015A, KISTLER) and calibrated using a material testing system (MTS type AG-I series, SHIMADZU). The finite element method was also used to analysis the piezoelectric effect of PZT-5A. The results showed that, both in experiment and simulation, the charge generated from the piezoelectric material was only related to the magnitude of applied force and would not be affected by the loading area on the piezoelectric material. What this indicated is that a sensor array with small sensor size might be needed for accurate measuring the distributed force. Fracture of piezoelectric material was observed at 400N loading from MTS which would decrease the sensitivity of piezoelectric sensor. During experiment, it was observed that providing an addition pre-load on the PZT-5A and electrode would minimize the problem of drift phenomenon.
Moreover, by applying the dynamical calibration on the drift effect would also improved the measured charge signals. To conclude, a basic system for single piezoelectric ceramic force sensor measurement was established. The inter-group sensitivity variation was 1% to 3 % and with the calibrated curve the primary test demonstrated a 2% error.
[1] 周卓明(2003),壓電力學,臺北:全華。
[2] 黃士文(2005),「剪力式壓電晶體噴墨頭陣列設計研究」,國立成功大學航空太空工程學系碩士論文。
[3] 黃清弘(2005),「PVDF 壓電陣列感測器之製作、校正及應用」,國立成功大學機械工程學系碩士論文。
[4] 饒珮瑩(2003),「利用微機電技術設計及製作壓電式微型加速計」,國立成功大學航空太空工程學系碩士論文。
[5] 德技股份有限公司網站資料
[6] 萬能材料試驗機AG-I 系列操作說明書
[7] ANSYS Release 9.0 Documentation
[8] Bousdras VA. (2006), “A novel approach to bite force measurements in a porcine model in vivo.”, International Journal of Oral & Maxillofacial Surgery 2006; 35: 663-667.
[9] Gautschi, G. (2001), Piezoelectric Sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers, New York: Springer.
[10] Kaarel A. (2003), “Influence of Core Thickness on a Restored Crown of a First Premolar Using Finite Element Analysis.”, International
Journal of Prosthodontics 2003; 16:474-480.
[11] KISTER Charge Meter Type 5015A Instruction Manual
[12] Morneburg TR. (2003), “In Vivo Forces on Implants Influenced by Occlusal Scheme and Food Consistency.”, International Journal of
Prosthodontics 2003; 16: 481-486
[13] Major, M. A. (1984), Wheeler’s Dental anatomy, physiology, and occlusion, Philadelphia: Saunders.
[14] Mericske-Stern R. (1996), “Simultaneous force measurement in 3 dimensions on oral endosseous implants in vitro and in vivo.”, Clinical Oral Implants Research 1996; 7: 378-386.
[15] Rottner, K. (2004), “Effect of Occlusal Morphology on the Accuracy of Bite Force Measurement Using Thin Film Transducers.”,
International Journal of Prosthodontics 2004; 17:518-523.