| 研究生: |
賴柜宏 Lai, Chu-Hong |
|---|---|
| 論文名稱: |
自組織奈米結構與氧化鋅表面現象之掃瞄式探針顯微術研究 Self-assembled Nanostructures and ZnO Surface Phenomena studied by Scanning Probe Microscopy and Spectroscopy |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 氧化鋅 、掃瞄式探針顯微術 、奈米結構 |
| 外文關鍵詞: | ZnO, scanning probe microscopy, nanostructures |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文裡,我們有系統地探討自組織奈米結構的表面特性以及氧化鋅極性表面的電子特性。第一章的內容是回顧關於奈米結構的形成、量測以及氧化鋅表面現象等相關文獻。第二章則是將掃瞄式探針顯微鏡(SPM)的操作原理以及理論作一個說明。在第三章的部分則是描述實驗的步驟以及相關應用的設備。在研究的第一部份裡,主要是利用SPM的技術來瞭解奈米結構的表面形貌對於其磁特性的影響;在第二部分,我們將透過SPM的技術來瞭解氧化鋅的極性表面是如何透過表面的奈米缺陷來達成穩定的機制。
在第四章,我們則是描述自發成長的奈米階梯表面的磊晶過程與其形成表面形貌的關連。我們利用高能電子反射繞射儀和SPM在臨場下監控鉬的自發成長的奈米階梯表面,這些樣品乃是透過鉬與氧化鋁的(1-102)晶面基板之異質磊晶成長而成。經過觀察,階梯的邊緣方向乃是沿著[1-10]Mo//[11-20]Al2O3的磊晶方向,同時這些階梯的寬度統計呈現一個集中的分佈。經由結構的分析瞭解,這些自發性成長的奈米階梯表面乃是因為鉬在氧化鋁基板上的斜晶異質成長所導致。我們可以藉由一個簡單的幾何模型來描述這個階梯的寬度形成乃是根據氧化鋁基板的晶面與鉬的晶格不匹配所導致。
在第四章的另一部份,我們也展示了奈米結構的表面形貌對於其磁特性的影響。利用MBE的方式,大約4.5 奈米的自組織奈米鐵顆粒成功地在相當平坦白金的緩衝層上以室溫製作出來,同時利用退火(200oC)的方式將這些顆粒的粒徑有所做個調製。對於更進一步的退火(400oC)將使顆粒變得更大,同時其磁異向性將從垂直膜面方向轉為平躺於膜面。我們建立一個模型來描述粒徑大小的變化之於磁異向性的變化,對照實驗結果能得到相當的對應。因此,我們找到一個方式是藉由調整奈米顆粒的大小來調製磁性奈米顆粒的磁性排列。
在第五章,我們利用臨場探針掃瞄顯微術來瞭解氧化鋅的鋅露出極性表面如何透過表面缺陷來達到穩定的機制。藉由中能量的離子轟擊(2.5 keV)以及高溫之下的環境(850oC),屬於氧露出的表面缺陷被製作出來在氧化鋅的極性表面上並且有著兩種不同的型態:一為六角型的洞、一為小的坑。在這些氧露出缺陷跟鋅露出表面上有著相反的局域電場型態,這些現象被穿遂掃瞄頻譜(STS)以及KPM技術皆觀察到。這樣的觀察結果說明極性的表面穩定乃是透過這些缺陷所形成的反向的電場來達到表面能量穩定。同時,我們更進一步地利用對分佈來分析小缺陷坑之間的作用力,瞭解表面缺陷之間具有庫倫排斥力,並且帶有相當於一個電子電荷的帶電量。
In this thesis, we have systematically investigated the surface morphological properties of self-assembled nanostructures and electronic structures on the ZnO polar surface. Chapter 1 covers the paper reviews for formation and characterization of nanostructures and surface phenomena on ZnO. The theories and principles of SPM are introduced in Chapter 2, followed by the growth and experimental procedures in chapter 3. The purpose of the first part of this research is to understand the formation self-assembled vicinal surface and morphological effects on magnetic properties of magnetic nanostructures through using the techniques of scanning probe microscopy (SPM). For the second part of this thesis, we applied the electronic probing of SPM to demonstrate the stabilization of ZnO polar planes with surface nano defects. In chapter 4, we described the self-assembly of nanostructures related to the growth process in the heteroepitaxial system. The structure and surface morphology of self-assembled vicinal surfaces (SAVS) of Mo films epitaxially grown on the Al2O3(1 02) substrates have been investigated by reflective high energy electron diffraction and scanning tunneling microscopy. The terrace edges of the Mo(001) SAVS are mainly arranged along [1-10]Mo//[11-20]Al2O3 with a narrow distribution terrace width. The structural analyses show that the formation of the SAVS is due to the tilt growth of Mo(001) plane with respect to the Al2O3(1-102) substrate. By a simple geometric model, the tilt growth and SAVS of Mo(001) can be attributed to the asymmetric lattice mismatch between Mo(001) and Al2O3(1-102) surfaces.
On the other hand, we also demonstrated the nano-effects on the characters of self-assembled nanostructures, such as the magnetic properties depending on the surface morphology of ferromagnetic nanoparticles. We study the evolution of morphology and magnetization for the self-assembled Fe nanoparticles. The about 4.5 nm-Fe nanoparticles with out-of-plane magnetization have been grown on the atomically flat Pt(111) buffer layers on the Al2O3 substrate for sample grown at room temperature and annealed up to 200oC. Further annealing procedures at 400oC lead the nanoparticles coalesce into larger ones, meanwhile, the magnetization reorients from out-of-plane to in-plane direction. A theoretical model describing the nanoparticles shape and size dependence of spin-orientation transition is quantitatively in agreement with this observation. Here, we performed a sample route to engineer the spin direction for the magnetic nanoparticles by varying their diameters.
In chapter 5, we have investigated the stabilization of the Zn-terminated polar plane via surface defects using the in-situ scanning probe microscopy/spectroscopy. Using middle-energy Ar+ bombardment (2.5 keV) at high temperature (850oC), the O-terminated surface defects including two different morphology of hexagonal cavities and small pits were produced on the (0001)-Zn surface The local electronic structure of O-terminated surface defect shows an upward band-bending with respect to that of the Zn-terminated surface in an agreement with the observation of Kevin probe microscopy, showing a locally reversed electrostatic field on the (0001)-Zn surface for stabilization. Moreover, the pair-distribution of O-terminated pits indicates these small defects on ZnO surface having electrostatic repulsion behavior with one electron charge.
Chapter 1
[1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990).
[2] 高逢時,科學發展,386期,56-71,2005年2月。
[3] 呂世源,科學發展,359期,4-7,2002年11月。
[4] B. Degroote et al., K.U. Leuven, Instituut voor Kern- en Stralingsfysica.
[5] W. C. Lin, C. C. Kuo, C. L. Chiu, and Minn-Tsong Lin, J. Appl. Phys. 89, 7139 (2001).
[6] M.-T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C. M. Schneider, and J. Kirschner, Phys. Rev. B 55, 5886 (1997).
[7] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
[8] X. Y. Kong. and Z. L. Wang., Nano Lett. 3, 1625-1631 (2003).
[9] J. de la Figuera, M. A. Huerta-Garnica, J. E. Prieto, C. Ocal, and R. Miranda, Appl. Phys. Letts. 66 (8), 20 (1995)
[10] A. Schmidt and J. Kirschner, Ultramicroscopy 42–44, 483 (1992)
[11] D. Sekiba, R. Moroni et al., Appl. Phys. Letts. 84,762 (2004).
[12] Ernesto J. Escorcia-Aparicio et al., IEEE Trans. Mag. 34, 1219 (1998).
[12] Ernesto J. Escorcia-Aparicio et al., Phys. Rev. Lett. 81, 2144 (1998).
[13] R. D. McMichael, C. G. Lee et al., J. Appl. Phys. 88, 5296 (2000).
[14] Frédéric Favier et al, Science 293, 2227 (2001).
[15] Robert C. O’Handley, “Modern Magnetic Materials Principles and Applications”, (John Wieley & New York, 1999).
[16] Brad N. Engel, C. D. England, R. A. Van Leeuwen, Michael H. Wiedmann, and Charles M. Falco, Phys. Rev. Letts. 67, 1910 (1989).
[17] J. G. Gay and R. Richter, Phys. Rev. Letts. 56, 2728 (1986).
[18] A. J. Freeman and R. Wu, J. Magn. Magn. Mater. 100, 497 (1991).
[19] M. Sampanoni, A. Vaterlaus, M. Aeschlimann, and F. Meier, Phys. Rev. Letts. 59, 2483 (1987).
[20] Wookje Kim, J. H. Choi, T.-U. Nahm, S. H. Song, and S.-J. Oh, J. Korean Phys. Soc. 44, 722 (2004).
[21] Dmitri I. Jerdev, and Bruce E. Koel, Surf. Sci., 513, L391 (2002).
[22] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
[23] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
[24] A. Wander, N. M. Harrison, Surf. Sci. 457, L342 (2000).
[25] G. Kresse, O. Dulub, and U. Diebold, Phys. Rev. B 68, 245209 (2003).
[26] A. Wander, N. M. Harrison, Surf. Sci. 468, L851 (2000).
[27] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, N. M. Harrison, Phys. Rev. Letts. 86, 3811 (2001).
[28] P. W. Tasker, J. Phys. C 12, 4977 (1979).
[29] C. Noguera, J. Phys.: Condens. Matt. 12, R367 (2000).
[30] J. Goniakowski, F. Finocchi and C. Noguera, Rep. Prog. Phys. 71, 016501 (2008).
[31] W. Göpel, J. Pollmann, I. Ivanov, and B. Reihl, Phys. Rev. B 26, 3144 (1982).
[32] K. Ozawa, Y. Oba, K. Edamoto, M. Higashiguchi, Y. Miura, K. Tanaka,3 K. Shimada, H. Namatame, and M. Taniguchi, Phys. Rev. B 79, 075314 (2009).
[33] A. Wander and N. M. Harrison, J. Chem. Phys. 115, 2312 (2001).
[34] M. Kunat, St. Gil Girol, Th. Becker, U. Burghaus, and Ch. Wöll, Phys. Rev. B 66, 081402(R) (2002).
[35] A. Pojani, F. Finocchi, J. Goniakowski, and C. Noguera, Surf. Sci. 387, 354 (1997).
[36] K. Refson, R. A. Wogelius, D. G. Fraser, M. C. Payne, M. H. Lee, and V. Milman, Phys. Rev. B 52, 10823 (1995).
[37] G. Zwicker and K. Jacobi, Surf. Sci. 131, 179 (1983).
[38] G. Zwicker, K. Jacobi, and J. Cunnigham, Int. J. Mass Spectrom. Ion Processes 60, 213 (1984).
[39] T. Becker, S. Hövel, M. Kunat, C. Boas, U. Burghaus, and C. Wöll, Surf. Sci. 486, L502 (2001).
[40] O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Letts. 90, 016102 (2003).
[41] F. Ostendorf, S. Torbrügge, and M. Reichling, Phys. Rev. 77, 041405(R) (2008).
Chapter 2
[1] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
[2] R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, UK, 1994).
[3] J. Tersoff and D. R. Hamann, Phys. Rev. Letts. 6, 57 (1961).
[4] J. Tersoff and D. R. Hamann, Phys. Rev. Letts. 50, 1998 (1983).
[5] C. J. Chen, Introduction to scanning tunneling microscopy (Oxford University Press, New York, 1993)
[6] J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. Höfer, and R. J. Behm, Phys. Rev. Letts. 62, 59 (1989).
[7] V. M. Hallmark, S. Chiang, J. F. Raboldt, J. D. Swalen, and R. J. Wilson, Phys. Rev. Letts. 59, 2879 (1987).
[8] C. J. Chen, Phys. Rev. Letts. 65, 448 (1990).
[9] A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B 31, 2602 (1985).
[10] V. A. Ukraintsev, Phys Rev. B 53, 11176 (1996).
[11] R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surf. Sci. 81, 295 (1987).
[12] J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Letts. 57, 2579 (1986).
[13] R. F. Feenstra, Surf. Sci. 299/300, 965 (1994).
[14] W. A. Hofer and J. Redinger. Surf. Sci. 447, 51 (2000).
[15] Van Esch, Phy. Rev. B 56, 13103 (1997).
[16] H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).
[17] F. Tuomisto, K. Pennanen, K. Saarinen and J. Sadowski, Phys. Rev. Letts. 93, 055505 (2004).
[18] F. Glas, G. Patriarche, L. Largeau and A. Lemaitre, Phys. Rev. Letts. 93, 086107 (2004).
[19] F. Matsukara, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, 2037 (1999).
[20] S. Heinze, M. Bode, A. Kubetzka, O. Peitzsch, X. Nie, S. Blügel and R. Wiesendanger, Science 288, 1805 (2000).
[21] F. London, Trans. Faraday Soc. 33, 8 (1937)
[22] P. J. W. Debye, Phys. Z. 21, 178 (1920).
[23] Communications Physical Laboratory, Leyden, Holland, 1912
[24] H. C. Hamaker, Physica 4, 1058 (1937).
[25] L. N. Kantorovich, A. S. Foster, A. L. Shlunger, and A. M. Stoneham, Surf. Sci. 445, 283 (2000).
[26] J. M. Pitarke, P. M. Echenique, and F. Flores, Surf. Sci. 217, 267 (1989).
[27] L. N. Kantorovich, A. I. Livshits, and A. M. Stoneham, J. Phys.: Condens. Matter 12, 795 (2000)
[28] S. Hudlet, M. Saint Jean, C. Guthmann, and J. Burger., Eur. Phys. J. 2, 5 (1998).
[29] M. Saint Jean, S. Hudlet, C. Guthmann, and J. Burger., J. Appl. Phys. 86, 5245 (1999).
[30] N. A. Burnham, R. J. Colton, and H. M. Pollock, Phys. Rev. Letts. 69, 144 (1992).
[31] J. B. Engelhardt, H. Dabringhaus, and K. Wandelt, Surf. Sci. 448, 187 (2000).
[32] M. Luna, F. Rieutord, N. A. Melman, Q. Dai, and M. Salmeron, J. Phys. Chem. A 102, 6793 (1998).
[33] L. B. Harris and J. Fiasson, J. Phys. C: Solid State Phys. 18, 4845 (1985).
[34] H. J. Wintle, Meas. Sci. Technol. 8, 508 (1997).
[35] J. M. R. Weaver and D. W. Abraham, J. Vac. Sci. Technol. B9, 1559 (1991).
[36] M. Nonnenmacher, M. P. O’Boyle and H. K. Wickramasinghe, Appl. Phys. Letts. 58, 2921 (1991).
[37] A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, P. Kaszuba and C. Daghlian, J. Appl. Phys. 77, 1888 (1995).
[38] T. Hochwitz, A. K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Never, P. Kaszuba, R. Gluck, R. Wells, J. Pekarik, and R. Finch, J. Vac. Sci. Technol. B14, 440 (1996).
[39] F. J. Giessibl, Science 267, 68 (1995).
[40] S. Kitamura and M. Iwatsuki, Jpn. J. Appl. Phys. 34, L145 (1995).
[41] H. Ueyama, M. Ohta, Y. Sugawara and S. Morita, Jpn. J. Appl. Phys. 34, L1086 (1995).
[42] S. Kitamura, K. Suzuki and M. Iwatsuki, JEOL News 32E, 42 (1995).
[43] S. Kitamura, M. Iwatsuki, Appl. Phys. Letts. 72, 3154 (1998).
[44] S. Kitamura, K. Suzuki and M. Iwatsuki, Appl. Surf. Sci. 140, 265 (1999).
Chapter 3
[1] See e.g. P. J. Dobson, B. A. Joyce, J. H. Neave and J. Zhang, J. Cryst. Growth 81, 1 (1987).
[2] P. K. Larsen and P. J. Dobson, Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surface (Plenum Press, New York, 1987).
[3] B. D. Cullity, Elements of X-ray Diffraction, (Addison Wesley, Reading, 1978).
[4] B. E. Warren, X-ray Diffraction, (Dover, New York, 1990).
[5] D. Jiles, Introduction to Magnetism and Magnetic Materials, (Chapman and Hall, 1991).
[6] Max G. Lagally, Methods of Experimental Physics, 245, Solid State Physics: Surface 22 (Academic Press 1985).
[7] R. Carey, E. D. Isaac, Magnetic Domains and Techniques for their observation, (Academic Press 1966).
Chapter 4
[1] S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).
[2] Z. Gai, J. Y. Howe, J. D. Guo, D. A. Blom, E. W. Plummer, and J. Shen, Appl. Phys. Lett. 86 (2005).
[3] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. H. Sun, Nature 420, 395 (2002).
[4] Y. Zhang, J. Wan, V. Skumryev, S. Stoyanov, Y. Huang, G. C. Hadjipanayis, and D. Weller, Appl. Phys. Lett. 85, 5343 (2004).
[5] J. C. A. Huang, C. H. Lee, Y. M. Hu, and C. C. Yu, Phys. Rev. B 62, 3929 (2000).
[6] R. Vollmer, S. van Dijken, M. Schleberger, and J. Kirschner, Phys. Rev. B 61, 1303 (2000).
[7] F. Wilhelm, U. Bovensiepen, A. Scherz, P. Poulopoulos, A. Ney, H. Wende, G. Ceballos, and K. Baberschke, J. Magn. Magn. Mater. 222, 163 (2000).
[8] W. C. Lin, P. C. Huang, K. J. Song, and M. T. Lin, Appl. Phys. Letts. 88, 153117 (2006).
[9] Th. Becker, A. Birkner, G. Witte, and Ch. Wöll, Phys. Rev. B 65, 115401 (2001).
[10] M. Takahashi, T. Ogawa, D. Hasegawa, and B. Jeyadevan, J. Appl. Phys. 97, 10J307 (2005).
[11] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogues, Nature 423, 850 (2003).
[12] S. Chikazumi, Physics of Ferromagnetism, International Series of Monographs on Physics 94 (Oxford university press, 1997), 2nd ed
[13] D. A. Thompson and J. S. Best, IBM J. Res. Dev. 44, 311 (2000).
[14] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).
[15] F. J. A. den Broeder, W. Hoving, and P. J. H. Bloemen, J. Magn. Magn. Mater. 93, 562 (1991).
[16] H. J. G. Draaisma, W. J. M. de Jonge, and F. J. A. den Broeder, J. Magn. Magn. Mater. 66, 351 (1987).
[17] H. Fritzsche, J. Kohlhepp, H. J. Elmers, and U. Gradmann, Phys. Rev. B 49, 15665 (1994).
[18] M. Stampanoni, A. Vaterlaus, M. Aeschlimann and F. Meier, Phys. Rev. Lett. 59, 2483 (1987).
[19] D.S. Chuang, C.A. Ballentine, and R.C. O`Handley, Phys. Rev. B 49, 15084 (1994).
Chapter 5
[1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
[2] P. W. Tasker, J. Phys. C 12, 4977 (1979).
[3] C. Noguera, J. Phys. Condens. Matter 12, R367 (2000).
[4] A. Wander and N. M. Harrison, J. Chem. Phys. 115, 2312 (2001).
[5] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
[6] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
[7] O. Dulub, U. Diebold and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
[8] F. Ostendorf, S. Torbrügge and M. Reichling, Phys. Rev. B 77, 041405(R) (2008).
[9] G. Kresse, O. Dulub and U. Diebold, Phys. Rev. B 68, 245409 (2003).
[10] M.-H. Du, S. B. Zhang, J. E. Northrup and S. C. Erwin, Phys. Rev. B 78, 155424 (2008).
[11] N. Jedrecy, M. Sauvage-Simkin, and R. Pinchaux, Appl. Surf. Sci. 162, 69 (2000).
[12] K. A. Alim, V. A. Fonoberov, and A. A. Balandin, Appl. Phys. Lett. 86, 053103 (2005).
[13] B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
[14] S. B. Zhang, S. -H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
[15] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
[16] S. Kitamura and M. Iwatsuki, Appl. Phys. Lett. 72, 3154 (1998).
[17] F. Oba, A. Togo, I. Tanaka, J. Paier and G. Kresse, Phys. Rev. B 77, 245202 (2008).
[18] E. Palacios-Lidón, B. Pérez-García, P. Vennéguès, J. Colchero, V. Muñoz-Sanjosé and J. Zúñiga-Pérez, Nanotechnology 20, 065701 (2009); the author’s supporting information.
[19] J. Zúñiga-Pérez, V. Muñoz-Sanjosé, E. Palacios-Lidón and J. Colchero, Phys. Rev. Lett. 95, 226105 (2005).
[20] K.-J Chao, C.-K. Shih, D.W. Gotthold and B.G. Streetman, Phys. Rev. Lett. 79, 4822 (1997).
[21] J. Repp, F. Moresco, G. Meyer, and K.-Heinz Rieder, P. Hyldgaard, M. Persson, Phys. Rev. Lett. 85, 2981 (2000).
[22] T. L. Hill, Statistic Mechanics (McGraw-Hill, New York, 1956).
[23] Ph. Ebert, X. Chen, M. Heinrich, M. Simon, K. Urban, and M. G. Lagally, Phys. Rev. Lett. 76, 2089 (1996).
[24] R. B. Dingle, Philos. Mag. 46, 861 (1955).
[25] Ph. Ebert, T. Zhang, F. Kluge, M. Simon, Z. Zhang and K. Urban, Phys. Rev. Lett. 83, 757 (1999).
[26] R. B. Dingle, Philos. Mag. 46, 831 (1955).
[27] Donald A. Neamen, An Introduction to Semiconductor Devices (McGraw Hill, New York, 2005).
[28] P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).
[29] A. DalCorso, M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B 50, 10715 (1994).
Appendix I
[1] L. Österlund et al., Phys. Rev. Letts. 83, 4812 (1999).
[2] Ph. Ebert et al., Phys. Rev. Letts. 76, 2089 (1996).
[3] Ph. Ebert et al., Phys. Rev. Letts 83, 757 (1999).
[4] G. R. Carlow, R. J. Barel, and M. Zinke-Allmang, Phys. Rev. B 56, 12519 (1997).
[5] T. L. Hill, “Statistical Mechanics”, (McGraw-Hill, New York, 1956).
[6] S. M. Allen and E. L. Thomas, “The structures of materials”, (John Wieley & Sons, New York, 1999).
[7] J. Repp, F. Moresco, G. Meyer, and K.-H. Rieder, Phys. Rev. Letts. 85, 2981 (2000).