| 研究生: |
陳森豐 Chen, Shen-Feng |
|---|---|
| 論文名稱: |
高高屏地區空氣污染物之三度空間分佈 Characteristic of the three-dimensional spatial distribution of gaseous pollutants at the Kao-Ping air basin |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 混和層 |
| 外文關鍵詞: | chemical amplification, tethersonde, mixing layer, radical budget, ozonesonde, radiosonde |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對高高屏地區空氣污染問題,在地表處利用環保署自動監測站之監測數據、光化學污染物(HCHO、H2O2與HNO3)之採樣及氣象條件(溫度、濕度、日照強度與NO2之光解速率常數(J-NO2))之觀測;在高空中利用釋放氣球(radiosonde)、繫留氣球(tethersonde、ozonesonde及採樣袋)與輕航機(GPS與O3 monitor)進行採樣,藉以了解高高屏地區空氣污染物在三度空間中垂直與水平之分佈現象。 在採樣期間(民國92年10/25~11/1與93年5/12~5/15)發現,高高屏地區在這十二天中之指標污染物幾乎均為臭氧,且在10/28、10/30、10/31與11/1均有數個測站之臭氧最大小時濃度超過120 ppb,所以將這四天稱為臭氧事件日。從氣象條件中發現,溫度、J-NO2、[HNO3]與[NO2+O3]在出現臭氧事件日之四天中比其他四天高,且radiosonde之結果顯示,發生事件日的四天中,混合層高度明顯較低。在繫留氣球採樣中發現,事件日發生當天晚上與隔日清晨,混合層之上發現較高濃度之殘留臭氧,高達80~110 ppb ,且高高屏地區高空中有時會有高污染煙流經過,其中高濃度之NO常對臭氧產生消耗的作用(NO titration)。因此,高高屏地區發生之臭氧事件日 應可歸因於:高濃度之臭氧前驅污染物、強烈之光化學反應、混和層上之高濃度殘留臭氧與混和層高度較低。反觀高高屏內陸地區城市(美濃與 里港),在輕航機之盤旋結果中並未發現混和層上之高濃度殘留臭氧,僅30~60 ppb,卻頻頻出現臭氧事件日,顯然高高屏沿海與內陸地區臭氧事件日之形成原因應略有不同。 本研究並應用radical budget預測由光化學反應產生之臭氧生成速率,並藉此推估傳輸作用對臭氧生成速率之貢獻量,但結果顯示模式明顯較實測值高出許多,原因應為模式預測之過氧自由基濃度偏高,應用chemical amplification於里港進行過氧自由基之實測修正後,臭氧生成速率較實測值差小,此差距應來自於臭氧濃度水平與垂直傳輸效應下之結果,其貢獻量為20~90%,六點至七點時,達90%以上,七點至十點時,下降至20~70% ,近午時,又上升至85%,若配合從繫留氣球觀察出之海陸風效應,海風對臭氧與其前驅污染物之水平傳輸作用,應對內陸鄉鎮(美濃、里港)常發生臭氧事件日地區具有一定之貢獻量。
The purpose of this study is to characterize the three-dimensional spatial distribution of gaseous pollutants at the Kao-Ping air basin, which is the worst air quality area in Taiwan. On the ground, the photochemical pollutants including HCHO, H2O2, and HNO3 and the meteorological factors, including temperature, relative humidity, radiation intensity and photolysis rate constant of NO2 were measured simultaneously. In aloft, radiosonde, tethersonde, ozonesonde, and tethered balloon with sampling bag and personal pump were used to measure the vertical concentration profile at fixed location. The light-aircraft was used to measure the horizontal and vertical concentration profiles.
There were four ozone episode days, that is the maximum hourly O3 concentration greater than 120 ppb, during 10/25~11/1, 2003 based on the Taiwan EPA air quality monitoring network. In the episodic days, the temperature, J-NO2, HNO3, and [NO2 + O3] were greater than those in the other days; but RH and mixing height were smaller. The results of tethered balloon indicated that the reserved ozone concentration above mixing layer were 80~110 ppb in ozone episode days and sometimes the reserved ozone was titrated by NO in polluted plume. The effect of sea-land breeze was significant on the air quality in Kao-Ping air basin based on the results from tethersonde. The high ozone concentrations in Kao-Ping air basin were attributed to the strong photochemical reaction, the high concentration of reserved ozone aloft, and the low mixing height.
The radical budget method was used to estimate the ozone production rates in the polluted Kao-Ping air basin. The calculated results were much greater than the observed. The differences were due to the calculation of peroxide radical, which was not suitable for polluted area. Therefore, observed peroxide radical concentrations by the chemical amplification method were used in the radical budget method. The modified ozone production rate was less than the observed and the magnitude of difference should be from transportation of ozone including horizontal and vertical transportation. The contributions of transportation to the ozone production rate were 20~90%.
Ammann, M., M. Kalberer, D. T. Jost, L. Tobler, E. Rossler, D. Piguet, H. W. Gaggeler, and U. Saltensperger (1988) Heterogeneous production of nitrous acid on soot in polluted air masses. Nature., 395: 157-160.
Anlauf, K. G., Mickle, R. E. and Trivett, N. B. A. (1994) Measurement of ozone during Polar Sunrise Experiment. J. Geophys. Res., 99(D12), 25345-25353.
Aneja, V. P., Mathur, R., Arya, S. P., Li, Y., Murray, G. C., Murray, JR. and Manuszak, T. L. (2000) Coupling the Vertical Distribution of Ozone in the Atmospheric Boundary Layer. Environ. Sci. Technol.,34,2324-2329.
Beck, S. M. and Coauthors (1987) Operational overview of NASA GTE/CITE 1 airborne instrument comparison: Carbon monoxide, nitric oxide, and hydroxyl instrumentation, J. Geophys. Res., 92, 1977-1985
Beyrich, F. (1997) Mixing height estimation from sodar data-A critical discussion, Atmos. Environ.,31, 3941-3953
Baulch et al., Evaluated kinetic and photochemical data for atmospheric chemistry:Supplement 1. CODATA Task Group of Chemical Kinetics., J. Geophys. Res., Data 11, 11327-11496.
Cantrell, C. A. and D.H. Stedman (1982) A possible technique for the measurement of atmospheric peroxy radicals, Geophys. Res. Lett., 9, 846-849.
Cantrell et al. (1992) Peroxy radical in the ROSE experiment:Measurement and theory, J. Geophys. Res., 97, 20671-20686,
Chan. C. Y., T. M. Hard, A. A. Mehrabzadeh, L. A. George, and R. J. O’Brien (1990) Third-generation FAGE instrument for tropospheric hydroxyl radical measurement. J. Geophys. Res., 95, 18569-18576
Chen, C. L., Tsuang, B. J., Tu, C. Y., Cheng, W. L. and Lin, M. D. (2002) Wintertime vertical profiles of air pollutants over a suburban area in central Taiwan, Atmos. Environ., 36, 2049-2059.
Colbeck, I. and Harrison, R. M. (1985) Dry deposition of ozone:some measurements of deposition velocity and of vertical profiles to 100 meters, Atmos. Environ., 19, 1807-1818.
Dickerson, R. R. and D. H. Stedman (1980) Precision of NO2 photolysis rate measurements, Ameri. Chem. Soci., 14, 1261-1262. Eisele, F. L., and D. J. Tanner (1991) Ion-assisted tropospheric OH measurements, J. Geophys. Res., 96, 9295-9308 Felton, C. C., J. C. Sheppard, and M. J. Campbell (1990) The radiochemical hydroxyl radical measurement method, Environ. Sci. Technol., 24, 1841-1847. Grant, R. H. and Wang, K. L. (1999) Ozone profile over a suburban neighborhood, Atmos. Environ., 33, 51-63.
Greenberg, J. P., Guenther, A., Zimmerman, P., Baugh, W., Geron, C., Davis, K., Helmig, D. and klinger, L.F. (1999) Tethered ballon measurements of biogenic VOCs in the atmospheric boundary layer, Atmos. Environ.,33,855-867.
Gusten et al., Nocturnal depletion of ozone in the Upper Rhine Valley, Atmos. Environ., 32, 1195-1202.
Hare et al. (1992) Diurnal HO2 cycles at clean air and urban sites in the troposphere, J. Geophys. Res., 97, 9785-9794.
Helmis et al., Thessaloniki field measurement campaign – I. Wind field and atmospheric boundary layer structure over Greater Thessaloniki Area, under light background flow, Atmos. Environ., 31, 1101-1114.
Hofzumahaus, A., H. P. Dorn, J. Callies, U. Platt and D. H. Ehhalt (1991) Tropospheric OH concentration measurements by laser long-path absorption spectroscopy. Atmos. Environ., 25A, 2017-2022
Holland, F., M. Hessling, and A. Hofzumahaus (1995) In situ measurement of tropospheric OH radicals by laser-induced fluorescence-A description of the KFA instrument, J. Atoms. Sci., 52, 3393-3401.
Holzworth, C. G. (1967) Mixing depths, wind speeds, and air pollution potential for selected locations in the United States, J. Appl. Metero., 6, 1039-1044
Kelly et al., Measurement of oxides of nitrogen and nitric acid in clean air, J. Geophys. Res., 85, 7417-7425, 1980. Kitto, N. A.-M. and R. M. Harrison(1992) Nitrous and Nitric Acid Measurements at Site in South-East England, Atmos. Environ.,26A:235-241.
Kleinman et al. (1986) Photochemical formation in the boundary layer, J. Geophys. Res., 91, 10889-10904.
Kleinman et al. (1994) Ozone formation at a rural site in the southern United States, J. Geophys. Res., 99, 3469-3482.
Lee et al. (1993) Measurement and speciation of gas phase peroxides in the atmosphere, J. Geophys. Res., 98, 2911-2915.
Leighton, P. A. (1961) Photochemistry of Air Pollution, Academic Press, New York. Lena, F. and Desiato, F. (1999) Intercomparison of nocturnal mixing height estimate methods for urban air pollution modelling, Atmos. Environ.,33,2385-2393. Madronich, S. (1987) Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 92, 9740-9752. Mihelcic, D., P. Musgen, and D. Ehhalt (1985) An improved method of measuring tropospheric NO2 and RO2 by matrix isolation and electron spin resonance, J. Atoms. Chem., 3, 341-361.
Moller et al. (1999) New directions explanation for the recent dramatic increase of H2O2 concentrations found in Greenland ice cores, Atmos. Environ., 33, 2435-2437.
Mount, G. H. (1992) The measurement of tropospheric OH by long-path absorption.1. Instrumentation, J. Geophys. Res., 97, 2427-2444.
Palo et al. (1996) Measurements of lower carbonyls in Rome ambient air, Atmos. Environ., 22, 3757-3764.
Parrish et al. (1983) The measurement of the photodissociation rate of NO2 in the atmosphere, Atmos. Environ., 17, 1365-1379.
Pisano et al., Vertical nitrogen dioxide and ozone concentrations measured from a tethered balloon in the Lower Fraser Valley, Atmos. Environ., 31, 2071-2081. Ridley et al. (1993) Measurements and model simulations of the photostationary state during the Mauna Loa Observatory Experiment:Implications for radical concentration and ozone production and loss rates, J. Geophys. Res., 97, 10378-10388.
Ritter et al., Ground level measurements of nitric oxide,nitrogen dioxide and ozone in rural air,in nitrogenous air pollutants:Chemical and biological implications,edited by D. Grosjean, Butterworth , Stoneham, mass.,1979
Sakugawa, H., I. R. Kaplan, W. Tsai, and Y. Cohen (1990) Atmospheric Hydrogen Peroxide, Environ. Sci. Technol.,24:1452–1462.
Seibert, P., Beyrich, F., Gryning, S. E., J, S., R, A. and T, P(2000) Review and intercomparsion of operational methods for the determination of the mixing height, Atmos. Environ., 34,1001-1027.
Seinfeld J. H. and S. N. Pandis (1998) Atmospheric chemistry and physics.
Sillman et al (1990) The sensitivity of ozone to nitrogen oxide and hydrocarbons in regional ozone episodes, J. Geophys. Res., 95, 1837-1851.
Stevens, P. S., J. H. Mather, and W. H. Brune (1994) Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure, J. Geophys. Res., 99, 3543-3557.
Stockwell et al (1990) The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95, 16343-16367.
Trainer et al. (1991) Observations and modeling of the reacitve nitrogen photochemistry at a rural site, J. Geophys. Res., 96, 3045-3062.
William P. L. Carter (1990) A detailed mechanism for the gas-phase atmospheric
reactions of organic compounds, Atmos. Environ., 24A(3), 481-518.
Yu, T. Y., and L. F. W. Chang (2000) Selection of scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis, Atmos. Environ., 34, 4499-4509
行政院環境保護署 (1999) 環境白皮書。
行政院環境保護署 (2003) 環境保護統計年報。
李宗霖 (2003) 夜間混和層以上氣態污染物對日間光化反應所造成之影響,國立成功大學環境工程研究所碩士論文。
林勇名 (1999) 大氣中氣相H2O2量測方法及光化學反應機制之研究,國立成功大學環境工程研究所碩士論文。
林清和、林博雄、吳義林、賴信志、賴進興 (2003) 本縣周邊及沿海縱向尺度氣象及探空資料、污染物濃度分析及模式模擬境外移入對本縣空氣品質之影響,高雄縣環保局。
郭奕伶 (1997) 高屏地區光化學煙霧成因之研究,國立成功大學環境工程研究所碩士論文。 楊之遠、柳中明 (1995) 台灣臭氧光化污染嚴重個案分析(1993-1994)。
謝輔宸 (2001) 高屏地區污染源排放量對於臭氧形成之影響,國立成功大學環境工程研究所碩士論文。