簡易檢索 / 詳目顯示

研究生: 何尊煒
Ho, Tzuen-Wei
論文名稱: 矽奈米線太陽能電池元件之製作與量測
The Fabrication and Measurements of Silicon Nanowire Solar Cell Devices
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 184
中文關鍵詞: 半導體量子線奈米線液相磊晶磊晶成長垂直成直線太陽能電池
外文關鍵詞: semiconductor quantum wires, nanowires, silicon, liquid phase epitaxy, epitaxial growth, vertical alignment, solar cells
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩大部分:第一部份為一維奈米材料的合成包括垂直矽奈米線及P型垂直矽奈米線的成長。我們在化學氣相沉積反應器內放置濺鍍Au觸媒的Si (111)基板,且通入SiCl4氣體進行VLS機制成長矽奈米線,在最適化條件下包括H2退火移除表面的氧化層,磊晶矽奈米線的直徑150~200 nm,且沿著四個<111>族群的方向成長,1個方向垂直和3個方向傾斜於Si (111)基板表面。因此,使用Ramp-cooling程序企圖以液相磊晶(LPE)的機制成長高程度有序僅沿著 [111]方向的矽奈米線陣列在Au觸媒/Si (111)基板上,首先Au觸媒/Si (111)基板在650℃下進行H2退火形成Au-Si合金的奈米粒子,然後降溫控制沉澱析出的速率以LPE機制磊晶Si晶種在Si (111)基板上,這個基板在SiCl4/H2氣氛下逐漸加熱到850℃以VLS機制在Si晶種上成長矽奈米線。因此,在Au觸媒沒有使用模板或圖案的情況下近似100%垂直矽奈米線僅沿著[111]方向再現成長在Si (111)基板上,這高密集度的垂直矽奈米線可以應用在太陽能電池及奈米元件上有更好的發展潛力。
    第二部分為有關奈米線基礎的太陽能電池製作,若關注於經濟面及量產能力,以熱壁式化學氣相沉積系統適合於生產大面積及低成本的矽奈米線太陽能電池,使用熱壁式化學氣相沉積法以SiCl4氣體源及200 ppm BCl3當作P型硼摻雜的氣體源,初期成長有較大的高寬比值P型垂直矽奈米線陣列在Au/Si (111)基板上,接著以低壓化學氣相沉積法(高溫爐)在高溫850℃及10%矽甲烷(SiH4)為本質層先驅物沉積多晶矽薄膜厚度約50〜200 nm在p-SiNWs /p-Si (111)基板上,再次成長的矽薄膜本質層進行分析結構及電性應用在太陽能電池的研究。因此,我們的研究以徑向P-N及P-i-N結構製作矽奈米線基礎的太陽能電池,我們將詳細探討P-N接面元件製作的程序,改變不同矽奈米線陣列的長度、直徑、摻雜濃度分佈及本質層厚度探討光的吸收特性在太陽能電池轉換效率的影響,徑向P-N接面太陽能電池在照光源AM 1.5G與入射光強度100 mW/cm2的條件下可以提供Voc=0.399 V;Jsc=10.49 mA/cm2;F.F=27.36%及轉換效率η=1.15%。開發徑向P-N及P-i-N接面的太陽能電池是有前瞻性的奈米線半導體技術,有潛力大幅提升太陽能電池的轉換效率。

    There are two main subjects have been studied in this essay. The first part is the synthesis of one-dimensional nanomaterials including vertically-aligned SiNWs and P-type silicon nanowires. We have grown silicon nanowires (SiNWs) on Si (111) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor (CVD). Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <111> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [111] only was attempted on Au-coated Si (111) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650℃ to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850℃ for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically- aligned SiNWs along [111] only could be reproducibly grown on Si (111), without using a template or patterning the metal catalyst. The high density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.
    The second part is about the fabrication of NW-based solar cell. In respect to the economic consideration and scale-up ability, a hot wall CVD system is suitable for producing a large-area and low cost Si NW-based solar cell. High aspect ratio p-type silicon nanowire (p-SiNW) arrays were initially grown on gold-coated Si (111) substrates by hot-wall CVD using SiCl4 as the source gas and 200 ppm trichloro borane (BCl3 ) gas as the p-type dopant source. We report on the deposition of 50-200 nm thick polycrystalline silicon films on p-SiNWs /p-Si (111) substrates in a low pressure CVD furnace at high temperatures (850℃) and using 10% silane (SiH4) gas as precursor. The re-grown silicon layers were analyzed structurally and electrically to investigate their suitability for cell processing. Therefore, we study to fabricate Si NW-based solar cells by using radial P-N and P-i-N structure. We will explore details of the growth mechanism to make such a junction. Various length and diameter of nanowire arrays will be utilized to relate light absorption characteristics to efficiency of solar cells. The radial P-N junction cell can provide a Voc of 0.399 V, a Jsc of 10.49 mA/cm2, a F.F. of 27.36%, and an energy conversion efficiency (η) of 1.15% under the AM 1.5 illumination with an incident light intensity of 100 mW/cm2. The development of the radial P-N junction and P-i-N junction SiNWs photovoltaic device suggests that semiconducting NWs are a promising technology for improving solar cell efficiencies.

    中文摘要 I 英文摘要 III 誌謝 VI 目錄 VIII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 矽奈米線的發展現況 6 1-3 矽奈米線應用於太陽能電池的發展現況 8 1-4 研究動機 12 1-4-1垂直矽奈米線的成長 13 1-4-2徑向P-N及P-i-N接面矽奈米線陣列太陽能電池的製作 14 第二章 理論基礎與文獻回顧 16 2-1成長一維奈米材料的方法 16 2-1-1 Vapor-Liquid-Solid (VLS)機制 18 2-1-2氧化物促進成長法(Oxide assisted growth) 19 2-1-3 Vapor-Solid (VS)機制 20 2-2矽的結構與特性 24 2-2-1矽的基本性質 24 2-2-2矽的晶體結構 25 2-2-3矽的能帶結構 26 2-2-4矽的電性 27 2-3矽奈米線的成長 28 2-4矽奈米線太陽能電池簡介… 35 2-5太陽能電池的工作原理與效率計算 47 2-5-1工作原理 47 2-5-2太陽能電池的量測與效率計算 52 2-5-3太陽能電池的等效電路 57 第三章 實驗步驟與方法 60 3-1實驗流程 60 3-2實驗設備 61 3-2-1化學氣相沉積系統 61 3-2-2雙套石英管式反應腔體 62 3-2-3三區段加熱管狀式高溫爐 62 3-2-4抽氣及真空系統 63 3-2-5氣體輸送裝置 63 3-2-5-1高純度及壓力鋼瓶輸送 63 3-2-5-2造泡蒸氣產生器輸送 63 3-2-6氣體預混合器 64 3-2-7反應腔內壓力量測系統 65 3-2-7-1反應腔體入口側 65 3-2-7-2反應腔體出口側 65 3-2-8反應溫度量測系統 66 3-2-9氣體流量控制系統 67 3-2-10廢氣酸鹼中和處理系統 67 3-3實驗材料 68 3-3-1實驗氣體 68 3-3-2矽基板材料 70 3-3-3真空管件材料 71 3-3-4濺鍍靶材 71 3-3-5化學藥品 71 3-4實驗步驟 73 3-4-1製作矽奈米線太陽能電池流程 73 3-4-1-1 P-N接面結構矽奈米線太陽能電池 73 3-4-1-2 P-i-N接面結構矽奈米線太陽能電池 74 3-4-2矽基板的前處理 75 3-4-3濺鍍Au薄膜在矽基板 77 3-4-4 VLS機制成長p-type垂直矽奈米線 78 3-4-5移除矽奈米線頂端的Au觸媒 79 3-4-6氧化磷(P2O5)預沉積及磷趨入(drive-in)程序 82 3-4-7濺鍍Al接觸(bottom)電極 84 3-4-8 Al背電場的製作(Al-BSF) 85 3-4-9濺鍍ITO透明導電膜 86 3-4-10濺鍍Au手指狀接觸(top)電極 87 3-4-11試片邊緣防止導通的絕緣處理 88 3-5實驗分析 89 3-5-1 掃描式電子顯微鏡 89 3-5-2 能量散佈分析儀(EDS or EDX) 90 3-5-3 穿透式電子顯微鏡 91 3-5-4 拉曼光譜儀 93 3-5-5 紫外光/可見光光譜儀(UV/Visible Spectrophotometer) 95 3-5-6 太陽光模擬器電流/電壓量測(I-V)系統 96 3-5-7 原子力顯微鏡(AFM) 96 3-5-8電性量測系統(I-V) 97 3-5-9四點探針(Four-point Probe) 98 3-5-10二次電子質譜儀量測系統(SIMS) 99 3-5-11光譜響應/量子效率/光電流轉換效率量測系統 101 第四章 結果與討論 102 4-1 以氣-液-固(V-L-S)機制成長矽奈米線 102 4-1-1改變SiCl4濃度vs.成長矽奈米線的影響 103 4-1-2改變SiCl4進料溫度vs.成長矽奈米線的影響 106 4-1-3改變H2退火程序溫度vs.成長矽奈米線的影響 109 4-1-4章節結語 111 4-2以降溫程序(Ramp cooling)有效控制垂直矽奈米線成長 112 4-2-1改變降溫速率vs.成長矽奈米線的影響 114 4-2-2改變不同基板vs.成長矽奈米線的影響 129 4-2-3硼摻雜vs.成長垂直矽奈米線的影響 132 4-2-4章節結語 134 4-3太陽能電池的製作及量測 135 4-3-1平面式P-N接面單晶矽基板應用於太陽能電池 135 4-3-2垂直矽奈米線陣列應用於太陽能電池 146 4-3-2-1徑向P-N接面垂直矽奈米線太陽能電池 146 4-3-2-2徑向P-i-N接面垂直矽奈米線太陽能電池 159 4-3-3章節結語 166 第五章 結論 168 5-1垂直矽奈米線的成長 168 5-2太陽能電池的製作及量測 169 5-2-1單晶矽基板及元件製作影響 169 5-2-2徑向P-N接面矽奈米線太陽能電池 170 5-2-3徑向P-i-N接面矽奈米線太陽能電池 171 5-3未來改善矽奈米線太陽能電池的建議方向 172 5-3-1矽奈米線的表面鈍化處理(passivation) 172 5-3-2 N型磷原子趨入(drive-in)深度最適化控制 172 5-3-3 Cu取代Au觸媒成長垂直矽奈米線 172 5-3-4以PECVD成長N型矽薄膜殼層 173 5-3-5改善接觸電極製作 173 參考文獻 175

    [1]”量子力學的發跡與遠景”,高文芳,交大物理所,2003年3月.
    [2] http://www.zyvex.com/nanotech/feynman.html
    [3] D. M. Eigler and E. K. Schweizer, Nature, 344, 524 (1990).
    [4] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science, 262, 218 (1993).
    [5] S. Iijima, Nature, 354, 56 (1991).
    [6] C. V. Nguyen, C. So, R. M. Stevens, Y. Li, L. Delziet, P. Sarrazin, and M. Meyyappan, J. Phys. Chem. B, 108, 2816 (2004).
    [7] “矽奈米線及矽奈米管”,唐元洪,化學工業出版社, 2006年10月.
    [8] http://zh.wikipedia.org/zh-hant/
    [9] J. Goldberger, A. I. Hochbaum, R. Fan, and P.Yang, Nano Lett., 6, 973 (2006).
    [10] G. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, and M. Lundstrom, Nano Lett., 7, 642 (2007).
    [11] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature, 451, 163 (2008).
    [12] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard III, and J. R. Heath, Nature, 451, 168 (2008).
    [13] A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, Appl. Phys. Lett., 93 121110-1, (2008).
    [14] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett., 91, 233117-1 (2007).
    [15] O. Gunawan ,and S. Guha, Sol. Energy Mater. Sol. Cells, 93, 1388 (2009).
    [16] S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner- Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, J. Am. Chem. Soc., 133, 1216 (2011).
    [17] M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, Energy Environ. Sci., 4, 866 (2011).
    [18] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol., 3, 31 (2008).
    [19] B. M. Kayes, N. S. Lewis, and H. A. Atwater, J. Appl. Phys., 97, 114302-1 (2005).
    [20] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 449, 885 (2007).
    [21] L. Hu, and G. Chen, Nano Lett., 7, 3249 (2007).
    [22] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner- Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A .Atwater, Nat. Mater., 9, 239 (2010).
    [23] Z. Zhang, T. Shimizu, S. Senz, and U. Gösele, Adv. Mater., 21, 2824 (2009).
    [24] B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis, and H. A. Atwater, Appl. Phys. Lett., 91, 103110-1 (2007).
    [25] B. Fuhrmann, H. S. Leipner, and H.-R. Höche, Nano Lett., 5, 2524 (2005).
    [26] A. I. Hochbaum, R. Fan, R. He, and P. Yang, Nano Lett., 5, 457 (2005).
    [27] A. Kramer, T. Boeck, P. Schramm, and R. Fornari, Physica E, 40, 2462 (2008).
    [28] F.-W. Yuan, and H.-Y. Tuan, Cryst. Growth Des., 10, 4741 (2010).
    [29] H. Schmid, M. T. Björk, P. Rice, T. Topuria, J. Knoch, H. Riel, and W. Riess, J. Appl. Phys., 103, 024304-1 (2008).
    [30] C.-J. Kim, D. Lee, H.-S. Lee, G. Lee, G.-S. Kim, and M.-H. Jo, Appl. Phys. Lett., 94, 173105-1 (2009).
    [31] G. Conibeer, Materials Today,10, 42 (2007).
    [32] B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys., 97, 114302 (2005).
    [33] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 449, 885 (2007).
    [34] 蔡進譯,物理雙月刊,27卷5期,701 (2005).
    [35] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Ying, F. Kim, and H Yan, Adv. Mater., 15, 253 (2003).
    [36] R. S. Wanger, and W. C. Ellis, Appl.Phys. Lett., 4, 89 (1964).
    [37] X. F. Duan, and C. M. Lieber, Adv. Mater., 12, 298 (2000).
    [38] X. F. Duan, and C. M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
    [39] Y. Wu, and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
    [40] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett., 61, 2051 (1992).
    [41] A. M. Morales, and C. M. Lieber, Science, 279, 208 (1998).
    [42] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater., 13, 113 (2001).
    [43] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater., 12, 746 (2000).
    [44] J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature, 399, 48 (1999).
    [45] H. Omi, and T. Ogino, Appl. Phys. Lett., 71, 2163 (1997).
    [46] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Appl. Phys. Lett., 84, 4176 (2004).
    [47] S. H. Yun, A. Dibos, J. Z. Wu, and D.-K. Kim, Appl. Phys. Lett., 84, 2892 (2004).
    [48] D. Wang, J. G. Lu, C. J. Otten, and W. E. Buhro, Appl. Phys. Lett., 83, 5280 (2003).
    [49] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, J .Am. Chem. Soc., 123, 2791 (2001).
    [50] Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, Adv. Mater., 16, 631 (2004).
    [51] Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, Adv. Mater., 16, 1436 (2004).
    [52] C. Ye, G. Meng, Y. Wang, Z. Jiang, and L. Zhang, J. Phys. Chem., B 106, 10338 (2002).
    [53] K. W. Chang, and J. J. Wu, J. Phys. Chem. B, 106, 7796 (2002).
    [54] R. Hupta, Q. Xiong, G. D. Mahan, and P. C. Eklund, Nano. Lett., 3, 1745 (2003).
    [55] E. P. A. M. Bakkers, and M. A. Verheijen, J. Am. Chem. Soc., 125, 3440 (2003).
    [56] M. S. Gudisksen, J. Wang, and C. M. Lieber, J. Phys. Chem. B, 106, 4036 (2002).
    [57] S. C. Lyu, Y. Zhnag, C. J. Lee, H. Ruh, and H. J. Lee, Chem. Mater., 15, 3294 (2003).
    [58] P. Gao, and Z. L. Wang, J. Phys. Chem. B, 106, 12653 (2002).
    [59] C. Tang, Y. Bando, and T. Sato, J. Phys. Chem. B, 106, 7449 (2002).
    [60] J. W. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, J. Phys. Chem. B, 106, 9526 (2002).
    [61] K. W. Chang ,and J. J. Wu, J. Phys. Chem. B, 108, 1838 (2004).
    [62] R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, and S.T. Lee. Mater. Sci. Eng. C., 16, 31 (2001).
    [63] S. T. Lee, N. Wang ,and C. S. Lee, Mater. Sci. Eng. A., 286, 16 (2000).
    [64] H. J. Fan, R. Scholz, F. M. Kolb, and M. Zacharias, Appl. Phys. Lett., 85, 4142 (2004).
    [65] “太陽能電池材料”,楊德仁,五南圖書出版社,2008年6月.
    [66] “材料科學與工程”,顏秀崗,全華科技圖書出版社,1990 年12月.
    [67] “材料科學導論”,龔吉合、潘德華、楊希文、傅承祖、施並裕、丁原傑,滄海書局出版社,1998年8月.
    [68] “半導體物理及元件”,李世鴻,台商圖書出版社,2005年2月.
    [69] H. I. Liu, N. I. Maluf, and R. F. W. Pease, J. Vac. Sci. Technol. B, 6, 2846 (1992).
    [70] V. Schmidt, J. V. Wittemann, S. Senz, and U. Goäsele, Adv. Mater., 21, 2681 (2009).
    [71] R. G. Treuting, and S. M. Arnold, Acta Met. , 5, 598 (1957).
    [72] R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
    [73] A. M. Morales, and C. M. Lieber, Science, 279, 208 (1998).
    [74] J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, Appl. Phys. Lett., 95, 243113 (2009).
    [75] Z. Pei, S.-T. Chang, C.-W. Liu, and Y.-C. Chen, IEEE Electron Device Lett., 30, 1305 (2009).
    [76] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 449, 885 (2007).
    [77] T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, Nano. Lett., 8, 3456 (2008).
    [78] S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner- Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, J. Am. Chem. Soc., 133, 1216 (2011).
    [79] F. Falk, Silicon nanowire solar cells with a-Si hetero-junction showing 7.3% efficiency, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II Loucas Tsakalakos, San Diego, California, USA Sunday 21 August 2011. http://spiedigitallibrary.org/proceedings/resource/
    [80] X. Wang, K. L .Pey, C. H. Yip, E. A. Fitzgerald, and D. A. Antoniadis, J. Appl. Phys., 108, 124303 (2010).
    [81] K. Q. Peng, A. J. Lu, R. Q. Zhang, and S. T. Lee, Adv. Funct. Mater., 18, 3026 (2008).
    [82] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu , Adv. Mater., 14, 1164 (2002).
    [83] K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, Appl. Phys. Lett., 95, 143119 (2009).
    [84] B. M. Kayes, “Radial p-n Junction, Wire Array Solar Cells”, California Institute of Technology Pasadena, California, 113 (2009). http://thesis.library.caltech.edu/3702/1/Brendan_Kayes_Thesis.pdf
    [85] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, Nano. Lett., 9, 1549 (2009).
    [86] M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J. M. Spurgeon, E. L. Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Energy Environ. Sci., 3, 1037 (2010).
    [87] J. Neison, The Physics of Solar Cells, Imperial College Press,1-2
    [88] 楊素華、蔡泰成,太陽光能發電元件, 科學發展, 390期, 53 (2005).
    [89] T Markvart Solar Electricity. New York:John Wiley & Sons Pubili- cation, (1995).
    [90] B. S. Meyerson, IBM J. Res. Devel., 34, 806 (1990).
    [91] 何尊煒,台灣科技大學化工所碩士論文,1998.
    [92] J. H. Woodruff, J. B. Ratchford, I. A. Goldthorpe, P. C. McIntyre, and C. E. D. Chidsey, Nano. Lett., 7, 1637 (2007).
    [93] H. Scheel1, S. Khachadorian, M. Cantoro, A. Colli, A. C. Ferrari, and C. Thomsen1, Phys. Stat. Sol. B, 245, 2090 (2008).
    [94] B. Li, D. Yu, and S.-L. Zhang, PHYSICAL REVIEW B, 59, 1645 (1999).
    [95] T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, J. Phys. Chem. C, 111, 15160 (2007).
    [96] A. F. I. Morral, J. Arbiol, J. D. Prades, A. Cirera, and J. R. Morante, Adv. Mater., 19, 1347 (2007).
    [97] T. Stelzner, G. Andrӓ, E. Wendler, W. Wesch, R. Scholz, U. Gösele, and S Christiansen, Nanotechnology, 17, 2895 (2006).
    [98] E. I. Givargizov, J. Crystal Growth, 20, 217 (1973).
    [99] E. I. Givargizov, Highly Anisotropic Crystals, 113-117, 241-244 (Reidel , Dordrecht, 1987).
    [100] O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, and S. Guha, Progress in Photovoltaics: Research and Applications, 19, 307 (2011).
    [101] R. A. Street, P. Qi, R. Lujan, and W. S. Wong, Appl. Phys. Lett., 93,163109-1 (2008).
    [102] L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapolc, J. Nanophot., 1, 013552-1 (2007).
    [103]A. Convertino, M. Cuscun, and F. Martelli, Nanotechnology, 21, 355701 -1 (2010).
    [104] V. Schmidt, S. Senz, and U. Gösele, Nano. Lett., 5, 931 (2005).
    [105] T. Aoyama, K. I. Goto, T. Yamazaki, and T. Ito, J. Vac. Sci. Technol. A, 14, 2909 (1996).
    [106] K. Albertsen, P. V. Eijk, H. Kerp, N. Merchant, and A. Shaikh, 22nd European Photovoltaic Solar Energy Conference, 1698 (2007).
    [107] F. Huster, 20th European Photovoltaic Solar Energy Conference, 1466 (2005).

    下載圖示 校內:2022-07-19公開
    校外:2022-07-19公開
    QR CODE