簡易檢索 / 詳目顯示

研究生: 汪神義
wang, shen-yi
論文名稱: 複合層板之無網格法分析
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 74
中文關鍵詞: 微分再生核複合層板
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      本文以三維漸近展開的解析模式來分析複合層板的力學行為。基本作法是視疊層板沿厚度方向為異向性材料所組成的構件,先從三維彈性方程式出發,不對位移場及應力場先預作假設,將其重新組合,利用無因次化,推導出三維彈性力學基本方程式及各場量,並將位移與應力分量對一個與板厚相關之微小參數作漸進展開,可得漸進展開模式中的各階層控制方程式。接著再搭配「微分再生核近似法」原理,來做數值模擬。和一般數值方法不同的是,微分再生核近似法在求解形狀函數之高階導數時具有高度的效率及精確性,很適合分析漸進展開後具有高階微分狀態的各階層控制方程式。

      本文最後選取了一橢圓正交複合層板來分別用三種不同疊層形式的順序及夾緣邊界支承。而所得之結果和解析解相比較後,都證明我們可以得到合理準確的數據。故漸進展開解析理論搭配再生核近似法作數值分析,實為一良好的選擇。

    none

    目錄 摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1-1. 研究動機 1 1-2. 文獻回顧 1 1-3. 研究內容 4 第二章 層板之三維彈性力學漸近理論 2-1. 問題陳述和基本方程式 5 2-2. 無因次化 9 2-3. 逐次積分 15 2-4. 邊界條件推導 19 第三章 微分再生核近似理論基礎 3-1. 離散的再生核近似 22 3-2. 再生核形狀函數的微分 24 第四章 數值結果與比較驗證 29 第五章 結論 32 參考文獻 33 附錄A 夾緣支承橢圓層板之三維彈性解 36 表 41 圖 45

    參考文獻
    [1].Ashton,J.E.,and Whitney,J.M.,Theory of Laminated plates,Technomic Publishing Co., Stamford,Conn.,(1970).

    [2].Lo,K.H.,Christensen,R.M.,and Wu,E.M.,”A High Order Theory Of Plate Deformation. Part 1:Homogeneous Plate.”J.Appl.Mesh.,ASME
    ,Vol.44,pp.663-668,(1977).

    [3].Lo,K.H.,Christensen,R.M.,and Wu,E.M.,”A High Order Theory Of Plate Deformation. Part 2:Laminate Plate.”J.Appl.Mesh.,ASME
    ,Vol.44,pp.669-676,(1977).

    [4].Lo,K.H.,Christensen,R.M.,andWu,E.M.,”StressSolution Determinationfor High Order Plate Theory.”Int.J.Solid Struct.
    Vol.14,pp.655-662,(1978).

    [5].Reddy, J. N. and Liu, C. F. ” A Higher-Order Shear Deformation Theory of Laminated Elastic Shells ”, Int. J. Engrg. Sci. 23, pp.319-330 (1985)

    [6]. Librescu, L.,Khdeir, A.A. and Frederick, D.M. ” A Shear Deformable Theory of Laminated Composite Shallow Shell-Type Panels and their Response Analysis I ” Free Vibration and Buckling. Acta Mech. 76, pp. 1-33 (1989)

    [7].Reddy,J.N.,”A Simple High-Order Theory for laminated Composite Plates.”J.Appl.Mesh.,ASME,Vol.51,pp.745-752,(1984).

    [8].Rogers,T.G.,Watson,p.,and Spencer,A.J.M.,”An Exact Three-Dimens-ion Solution for Normal Loading of Inhomogeneous and Laminated Anisotropic Elastc Plates of Moderate Thickness.”Proc.R. Soc.Lond.A
    ,Vol.437,pp.199-213,(1992).

    [9].Tarn, J. Q. and Wang, Y. M., ” An Asympotic Theory for Thermoelestic Analysis of Anisotropic Inhomogeneous and Laminated Pla-tes.” Accepted for publication in J.Therm.Stress,(1994)

    [10].Lancaster,P. and K. Salkauskas,"Surfaces Generated by Moving Least Squares Method",Mathematics of Computation,Vol. 37 PP. 141~158,(1981)。

    [11].Nayroles, B., Touzot, G. and Villon, P.: Generalizing the finite element method diffuse approximation and diffuse elements, Comput. Mech. 10, 307-318 (1992).

    [12].Nayroles,Touzot B.,G. and Villon P.,"Generalizing the Finite Element Method:Diffuse Approximation and Diffuse Element",Computational mechanics,Vol. 10 pp. 307~318,(1992)。

    [13]. Liu, W. K., Jun, S. and Zhang, Y. F.: Reproducing kernel particle methods, Int. J. Number. Methods Engrg.20, 1081-1106 (1995).

    [14].Belytschko, T., Krongauz, Y., Orang, D., Fleming, N.: Meshless methods:An Overview and Recen Developments, Computer-Methods in Applied Mechanics & Engineering, 139, 3-47(1996).

    [15].Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L. and Sacco, C.: A Stabilized finite point method for analysis of fluid mechanics problems,Computer Methods in Applied Mechanics & Engineering,139, 315-346 (1996).

    [16].Verhulst. F. ” Asymptotic analysis from theory to application ”, Berlin , Springer-Verlag, New York (1979)

    [17].Paris R.B. & Wood A.D..,” Asymptotics of high order differential equations ”, Harlow, Essex, England, Longman Scientific & Technical , New York (1986)

    [18] 于中平 , ’’複合層板應力分析之漸近理論’’ , (1984)

    下載圖示 校內:立即公開
    校外:2005-07-22公開
    QR CODE