簡易檢索 / 詳目顯示

研究生: 張家勝
Chang, Chia-Sheng
論文名稱: 硬模板法合成中孔洞氧化矽空心球在液晶顯示器之應用
Synthesis of Mesoporous Silica Hollow Sphere by Hard-Templating Technology for Application in Liquid Crystal Displayer
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化矽空心球液晶
外文關鍵詞: mesoporous silica hollow sphere, liquid crystal
相關次數: 點閱:59下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硬模板法常用來合成中空結構的材料,本研究用PMMA球作為硬模板以合成中孔洞氧化矽空心球。為了使PMMA球與氧化矽能成功結合,本研究加入適量的明膠來活化PMMA球表面,使氧化矽包覆上PMMA球。並藉由鍛燒移除有機模板後,得到具有高表面積及孔洞性的中孔洞氧化矽空心球。本研究可藉由添加不同尺度的PMMA球模板以及重複包覆合成的方式,調控氧化矽空心球的粒徑大小與球殼厚度,使其具有廣泛的應用性。除了PMMA球,本研究也利用其他polymer球作為硬模板,利用界面活性劑活化表面,使氧化矽成功地包覆上去,合成氧化矽空心球。不同於以往硬模板法所需之繁瑣的表面修飾步驟,本研究找到一個簡單的方法來合成中孔洞氧化矽空心球。
    一般製作智慧型窗戶都是在液晶內添加有機分子控制其穿透度,本研究是添加無機物材料,因其具有耐高溫且驅動電壓較低之優點。由於中孔洞氧化矽空心球具有中空的結構,而且孔徑大小較液晶分子大。經過表面疏水性修飾後,使氧化矽空心球與液晶分子均勻混和形成HSS-LC。將HSS-LC填入兩片ITO導電玻璃中以製作HSS-LC顯示器。藉由破壞周圍液晶分子的整齊度而形成許多散射區塊,所以對可見光產生散射使HSS-LC顯示器變霧(穿透度 = 10 %)。待通入外加電場後(= 60 V),液晶分子會排列整齊,使HSS-LC顯示器的散射區塊減少,玻璃變透明(穿透度 = 80 %)。

    Hard-templating method has been widely used to prepare the material with hollow interior. Herein, we use the PMMA beads as sacrificial hard templates to synthesize the mesoporous silica hollow spheres. To induce silica condensation on the PMMA beads, an appropriate amount of nature polymer gelatin is needed to be added for surface-activation of the PMMA beads. Consequently, the mesoporous silica hollow spheres were obtained from silicification on the gelatin-activated PMMA beads, and calcination for the removal the organic parts. The resulted mesoporous silica hollow spheres possess high surface area and large and tunable pore size. We can control the diameter and thickness of mesoporous silica hollow spheres by using PMMA beads of different sizes and repeating silicification procedures. In addition to the PMMA beads, we can also use other polymer beads as sacrificial hard templates. By adding appropriate amount of surfactant for surface-activation, the mesoporous silica hollow spheres were synthesized as well. Distinct from previous reports including complicated surface activation procedures, we proposed provides a convenient method to prepare mesoporous silica hollow spheres in high yield and reproducibility.
    Different from the general polymer-based smart windows (e.g. PDLC), we use the mesoporous silica hollow spheres as the additives to form scattering domains. Owing to the mesoporous shell, the hollow interiors of the silica hollow spheres are accessible to the environments. In addition, the pore size of the silica shell is larger than the dimension of the liquid crystal molecules, interiors in the mesoporous silica hollow spheres after hydrophobic silane modification would be fully filled with the liquid crystals. Thus, the hollow porous-silica spheres well disperse in the liquid crystal matrixes to form homogenous HSS-LC slurry. The HSS-LC slurry can be embedded between two transparent conductive glasses to create a HSS-LC displayer. The electro-optical device showed an opaque state with a light transmittance of about 10 %. The application of low effective voltages (= 60 V) resulted in a fast transition into a clear transparent state (T = 80 %) in millisecond range.

    第一章 緒論 1 1.1 中孔洞材料 1 1.2 界面活性劑簡介 3 1.2.1 界面活性劑基本性質 3 1.2.2 界面活性劑的分類 4 1.2.3 界面活性劑的行為 5 1.2.4 明膠(gelatin)的簡介 7 1.2.5 陽性─陰性離子型界面活性劑所組成的系統 7 1.3 氧化矽源之介紹 8 1.3.1 矽酸鹽的基本概念 8 1.3.2 TEOS的性質 11 1.4 表面修飾有機官能基 12 1.5 生物成礦(Biomineralization)之發展與研究 14 1.6 空心狀材料的合成 14 1.7 液晶的基本介紹 16 1.7.1 液晶的光電特性 16 1.7.2 液晶顯示器與電子窗簾基本介紹 18 第二章 實驗部分 20 2.1 化學藥品 20 2.2 樣品的合成方法 22 2.2.1 以PMMA球為模板合成中孔洞氧化矽空心球材料 22 2.2.2 以陰陽離子界面活性劑混合系統合成片狀圓盤氧化矽材料 24 2.2.3 用酸水熱法合成mesoporous silica 25 2.2.4 製作液晶顯示器 26 2.3 產物的鑑定 28 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) 28 2.3.2 掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM) 28 2.3.3 X光能量散佈光譜儀(Energy Dispersive Spectrometer;EDS ) 28 2.3.4 熱重分析儀 (Thermogravimetric analysis;TGA ) 28 2.3.5 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;XRD) 29 2.3.6 光學顯微鏡 (Optical Microscope) 29 2.3.7 氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm) 29 第三章 以模板法合成不同尺度之中孔洞氧化矽空心球 33 3.1 研究動機與實驗設計 33 3.2 結果與討論 34 3.2.1 改善均勻度高且分散性良好之中孔洞氧化矽空心球的合成方法 34 3.2.2 以溶熱法去除模板 38 3.2.3 以不同尺度之PMMA球合成氧化矽空心球 40 3.2.4 調控氧化矽空心球殼之厚度 42 3.2.5 水熱法對氧化矽空心球殼孔洞與結構之影響 44 3.2.6 以TEOS為氧化矽源合成中孔洞氧化矽空心球 48 3.2.6.1 TEOS添加量的效應 48 3.2.6.2 以不同尺度之PMMA球合成中空氧化矽球 50 3.2.6.3 不同pH值對氧化矽空心球殼完整度與厚度的影響 51 3.2.6.4 水熱過程溶液組成對氧化矽空心球殼均勻度的影響 53 3.2.7 利用其他球形polymer合成氧化矽空心球 54 3.2.7.1 Polymer 1118 (P1118) 54 3.2.7.2 Polymer 3503(P3503) 56 3.2.7.3 Polymer 13612(P13612) 57 3.2.7.4 Polymer PUD(PPUD) 59 第四章 液晶顯示器及電子窗簾之應用研究 62 4.1 研究動機與實驗設計 62 4.2 結果與討論 63 4.2.1 材料分散性與液晶驅動電壓 63 4.2.1.1 孔洞的必要性 63 4.2.1.2 HSS-LC顯示器 65 4.2.1.3 表面修飾 67 4.2.2 在液晶中混入中孔洞氧化矽空心球(HSS) 70 4.2.2.1 改變中孔洞氧化矽空心球混入的量 70 4.2.2.2 改變混入的中孔洞氧化矽空心球之尺度 71 4.2.2.3 HSS之表面積對HSS-LC顯示器的影響 72 4.2.2.4 在液晶中HSS的孔洞大小對其分散性的影響 73 4.2.3 混入其他中孔洞氧化矽材料 75 4.2.3.1 利用生物成礦合成的氧化矽材料 75 4.2.3.2 Mesoporous silica(MS) 76 4.2.3.3 利用生質能源合成的氧化矽材料 77 4.2.4 膽固醇液晶 78 第五章 結論 81 5.1 以模板法合成不同尺度之中孔洞氧化矽空心球材料之研究 81 5.2 液晶顯示器及電子窗簾之應用研究 81 參考文獻 83

    1. C. Kresge, M. Leonowicz, W. Roth, J. Vartuli and J. Beck, nature, 1992, 359, 710-712.
    2. J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson and E. Sheppard, Journal of the American Chemical Society, 1992, 114, 10834-10843.
    3. C.-G. Wu and T. Bein, Chemistry of materials, 1994, 6, 1109-1112.
    4. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202-6210.
    5. C. HyunáKo, Chemical Communications, 1996, 2467-2468.
    6. A. Sayari, Chemistry of Materials, 1996, 8, 1840-1852.
    7. M. Hartmann, A. Pöppl and L. Kevan, The Journal of Physical Chemistry, 1996, 100, 9906-9910.
    8. S. Narayanan, K. Deshpande and B. P. Prasad, Journal of molecular catalysis, 1994, 88, L271-L276.
    9. W. Wang, S. Xie, W. Zhou and A. Sayari, Chemistry of materials, 2004, 16, 1756-1762.
    10. J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angewandte Chemie, 2003, 115, 3254-3258.
    11. A. Vinu, V. Murugesan and M. Hartmann, Chemistry of materials, 2003, 15, 1385-1393.
    12. H.-P. Lina, C.-Y. Tangb and C.-Y. Linb, Jour nal of the Chi nese Chem i cal So ci ety, 2002, 49, 981-988.
    13. V. Alfredsson and M. W. Anderson, Chemistry of materials, 1996, 8, 1141-1146.
    14. H.-P. Lin and C.-Y. Mou, Accounts of chemical research, 2002, 35, 927-935.
    15. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park and G. D. Stucky, The Journal of Physical Chemistry B, 2002, 106, 2552-2558.
    16. A. Bhaumik and S. Inagaki, Journal of the American Chemical Society, 2001, 123, 691-696.
    17. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao, Angewandte Chemie International Edition, 2001, 40, 1258-1262.
    18. A. Walcarius, M. Etienne and B. Lebeau, Chemistry of materials, 2003, 15, 2161-2173.
    19. T. Yokoi, H. Yoshitake and T. Tatsumi, Journal of Materials Chemistry, 2004, 14, 951-957.
    20. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angewandte Chemie International Edition, 2003, 42, 413-417.
    21. J. Iraelachvili, S. Marcelja and R. Horn, Q Rev Biophys, 1980, 13, 121-200.
    22. S. Consola, M. Blanzat, E. Perez, J. C. Garrigues, P. Bordat and I. Rico‐Lattes, Chemistry-A European Journal, 2007, 13, 3039-3047.
    23. R. Schrieber and H. Gareis, Gelatine handbook: theory and industrial practice, Wiley-VCH, 2007.
    24. L. L. Brasher, K. L. Herrington and E. W. Kaler, Langmuir, 1995, 11, 4267-4277.
    25. M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu and J. A. Zasadzinski, The Journal of Physical Chemistry, 1996, 100, 5874-5879.
    26. K. Tsuchiya, H. Nakanishi, H. Sakai and M. Abe, Langmuir, 2004, 20, 2117-2122.
    27. C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro and E. Spigone, The Journal of Physical Chemistry B, 2007, 111, 898-908.
    28. L. Sepulveda and J. Cortes, The Journal of Physical Chemistry, 1985, 89, 5322-5324.
    29. M. E. Davis, Nature, 2002, 417, 813-821.
    30. N. K. Mal, M. Fujiwara and Y. Tanaka, Nature, 2003, 421, 350-353.
    31. A. Stein, Advanced Materials, 2003, 15, 763-775.
    32. F. Caruso, R. A. Caruso and H. Möhwald, Science, 1998, 282, 1111-1114.
    33. X. Xu and S. A. Asher, Journal of the American Chemical Society, 2004, 126, 7940-7945.
    34. G. Guan, Z. Zhang, Z. Wang, B. Liu, D. Gao and C. Xie, Advanced Materials, 2007, 19, 2370-2374.
    35. X. W. D. Lou, L. A. Archer and Z. Yang, Advanced Materials, 2008, 20, 3987-4019.
    36. D. W. Berreman, JOSA, 1973, 63, 1374-1380.
    37. B.-G. Wu, J. H. Erdmann and J. W. Doane, Liquid Crystals, 1989, 5, 1453-1465.
    38. E. Shimada and T. Uchida, Japanese journal of applied physics, 1992, 31, L352-L354.
    39. J. Erdmann, J. W. Doane, S. Zumer and G. Chidichimo, in OE/LASE'89, 15-20 Jan., Los Angeles. CA, International Society for Optics and Photonics, 1989, pp. 32-40.
    40. J. Fu, Q. Xu, J. Chen, Z. Chen, X. Huang and X. Tang, Chemical Communications, 2010, 46, 6563-6565.
    41. T.-S. Deng and F. Marlow, Chemistry of Materials, 2012, 24, 536-542.
    42. C. Lampert, Circuits and Devices Magazine, IEEE, 1992, 8, 19-26.
    43. A. J. Lovinger, K. R. Amundson and D. D. Davis, Chemistry of materials, 1994, 6, 1726-1736.

    下載圖示 校內:2018-05-10公開
    校外:2018-05-10公開
    QR CODE