| 研究生: |
張家勝 Chang, Chia-Sheng |
|---|---|
| 論文名稱: |
硬模板法合成中孔洞氧化矽空心球在液晶顯示器之應用 Synthesis of Mesoporous Silica Hollow Sphere by Hard-Templating Technology for Application in Liquid Crystal Displayer |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 氧化矽空心球 、液晶 |
| 外文關鍵詞: | mesoporous silica hollow sphere, liquid crystal |
| 相關次數: | 點閱:59 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硬模板法常用來合成中空結構的材料,本研究用PMMA球作為硬模板以合成中孔洞氧化矽空心球。為了使PMMA球與氧化矽能成功結合,本研究加入適量的明膠來活化PMMA球表面,使氧化矽包覆上PMMA球。並藉由鍛燒移除有機模板後,得到具有高表面積及孔洞性的中孔洞氧化矽空心球。本研究可藉由添加不同尺度的PMMA球模板以及重複包覆合成的方式,調控氧化矽空心球的粒徑大小與球殼厚度,使其具有廣泛的應用性。除了PMMA球,本研究也利用其他polymer球作為硬模板,利用界面活性劑活化表面,使氧化矽成功地包覆上去,合成氧化矽空心球。不同於以往硬模板法所需之繁瑣的表面修飾步驟,本研究找到一個簡單的方法來合成中孔洞氧化矽空心球。
一般製作智慧型窗戶都是在液晶內添加有機分子控制其穿透度,本研究是添加無機物材料,因其具有耐高溫且驅動電壓較低之優點。由於中孔洞氧化矽空心球具有中空的結構,而且孔徑大小較液晶分子大。經過表面疏水性修飾後,使氧化矽空心球與液晶分子均勻混和形成HSS-LC。將HSS-LC填入兩片ITO導電玻璃中以製作HSS-LC顯示器。藉由破壞周圍液晶分子的整齊度而形成許多散射區塊,所以對可見光產生散射使HSS-LC顯示器變霧(穿透度 = 10 %)。待通入外加電場後(= 60 V),液晶分子會排列整齊,使HSS-LC顯示器的散射區塊減少,玻璃變透明(穿透度 = 80 %)。
Hard-templating method has been widely used to prepare the material with hollow interior. Herein, we use the PMMA beads as sacrificial hard templates to synthesize the mesoporous silica hollow spheres. To induce silica condensation on the PMMA beads, an appropriate amount of nature polymer gelatin is needed to be added for surface-activation of the PMMA beads. Consequently, the mesoporous silica hollow spheres were obtained from silicification on the gelatin-activated PMMA beads, and calcination for the removal the organic parts. The resulted mesoporous silica hollow spheres possess high surface area and large and tunable pore size. We can control the diameter and thickness of mesoporous silica hollow spheres by using PMMA beads of different sizes and repeating silicification procedures. In addition to the PMMA beads, we can also use other polymer beads as sacrificial hard templates. By adding appropriate amount of surfactant for surface-activation, the mesoporous silica hollow spheres were synthesized as well. Distinct from previous reports including complicated surface activation procedures, we proposed provides a convenient method to prepare mesoporous silica hollow spheres in high yield and reproducibility.
Different from the general polymer-based smart windows (e.g. PDLC), we use the mesoporous silica hollow spheres as the additives to form scattering domains. Owing to the mesoporous shell, the hollow interiors of the silica hollow spheres are accessible to the environments. In addition, the pore size of the silica shell is larger than the dimension of the liquid crystal molecules, interiors in the mesoporous silica hollow spheres after hydrophobic silane modification would be fully filled with the liquid crystals. Thus, the hollow porous-silica spheres well disperse in the liquid crystal matrixes to form homogenous HSS-LC slurry. The HSS-LC slurry can be embedded between two transparent conductive glasses to create a HSS-LC displayer. The electro-optical device showed an opaque state with a light transmittance of about 10 %. The application of low effective voltages (= 60 V) resulted in a fast transition into a clear transparent state (T = 80 %) in millisecond range.
1. C. Kresge, M. Leonowicz, W. Roth, J. Vartuli and J. Beck, nature, 1992, 359, 710-712.
2. J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson and E. Sheppard, Journal of the American Chemical Society, 1992, 114, 10834-10843.
3. C.-G. Wu and T. Bein, Chemistry of materials, 1994, 6, 1109-1112.
4. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202-6210.
5. C. HyunáKo, Chemical Communications, 1996, 2467-2468.
6. A. Sayari, Chemistry of Materials, 1996, 8, 1840-1852.
7. M. Hartmann, A. Pöppl and L. Kevan, The Journal of Physical Chemistry, 1996, 100, 9906-9910.
8. S. Narayanan, K. Deshpande and B. P. Prasad, Journal of molecular catalysis, 1994, 88, L271-L276.
9. W. Wang, S. Xie, W. Zhou and A. Sayari, Chemistry of materials, 2004, 16, 1756-1762.
10. J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angewandte Chemie, 2003, 115, 3254-3258.
11. A. Vinu, V. Murugesan and M. Hartmann, Chemistry of materials, 2003, 15, 1385-1393.
12. H.-P. Lina, C.-Y. Tangb and C.-Y. Linb, Jour nal of the Chi nese Chem i cal So ci ety, 2002, 49, 981-988.
13. V. Alfredsson and M. W. Anderson, Chemistry of materials, 1996, 8, 1141-1146.
14. H.-P. Lin and C.-Y. Mou, Accounts of chemical research, 2002, 35, 927-935.
15. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park and G. D. Stucky, The Journal of Physical Chemistry B, 2002, 106, 2552-2558.
16. A. Bhaumik and S. Inagaki, Journal of the American Chemical Society, 2001, 123, 691-696.
17. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao, Angewandte Chemie International Edition, 2001, 40, 1258-1262.
18. A. Walcarius, M. Etienne and B. Lebeau, Chemistry of materials, 2003, 15, 2161-2173.
19. T. Yokoi, H. Yoshitake and T. Tatsumi, Journal of Materials Chemistry, 2004, 14, 951-957.
20. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angewandte Chemie International Edition, 2003, 42, 413-417.
21. J. Iraelachvili, S. Marcelja and R. Horn, Q Rev Biophys, 1980, 13, 121-200.
22. S. Consola, M. Blanzat, E. Perez, J. C. Garrigues, P. Bordat and I. Rico‐Lattes, Chemistry-A European Journal, 2007, 13, 3039-3047.
23. R. Schrieber and H. Gareis, Gelatine handbook: theory and industrial practice, Wiley-VCH, 2007.
24. L. L. Brasher, K. L. Herrington and E. W. Kaler, Langmuir, 1995, 11, 4267-4277.
25. M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu and J. A. Zasadzinski, The Journal of Physical Chemistry, 1996, 100, 5874-5879.
26. K. Tsuchiya, H. Nakanishi, H. Sakai and M. Abe, Langmuir, 2004, 20, 2117-2122.
27. C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro and E. Spigone, The Journal of Physical Chemistry B, 2007, 111, 898-908.
28. L. Sepulveda and J. Cortes, The Journal of Physical Chemistry, 1985, 89, 5322-5324.
29. M. E. Davis, Nature, 2002, 417, 813-821.
30. N. K. Mal, M. Fujiwara and Y. Tanaka, Nature, 2003, 421, 350-353.
31. A. Stein, Advanced Materials, 2003, 15, 763-775.
32. F. Caruso, R. A. Caruso and H. Möhwald, Science, 1998, 282, 1111-1114.
33. X. Xu and S. A. Asher, Journal of the American Chemical Society, 2004, 126, 7940-7945.
34. G. Guan, Z. Zhang, Z. Wang, B. Liu, D. Gao and C. Xie, Advanced Materials, 2007, 19, 2370-2374.
35. X. W. D. Lou, L. A. Archer and Z. Yang, Advanced Materials, 2008, 20, 3987-4019.
36. D. W. Berreman, JOSA, 1973, 63, 1374-1380.
37. B.-G. Wu, J. H. Erdmann and J. W. Doane, Liquid Crystals, 1989, 5, 1453-1465.
38. E. Shimada and T. Uchida, Japanese journal of applied physics, 1992, 31, L352-L354.
39. J. Erdmann, J. W. Doane, S. Zumer and G. Chidichimo, in OE/LASE'89, 15-20 Jan., Los Angeles. CA, International Society for Optics and Photonics, 1989, pp. 32-40.
40. J. Fu, Q. Xu, J. Chen, Z. Chen, X. Huang and X. Tang, Chemical Communications, 2010, 46, 6563-6565.
41. T.-S. Deng and F. Marlow, Chemistry of Materials, 2012, 24, 536-542.
42. C. Lampert, Circuits and Devices Magazine, IEEE, 1992, 8, 19-26.
43. A. J. Lovinger, K. R. Amundson and D. D. Davis, Chemistry of materials, 1994, 6, 1726-1736.