| 研究生: |
黃韻竹 Huang, Yun-Chu |
|---|---|
| 論文名稱: |
探討口腔癌細胞中miR-22降低表現的分子機轉 The mechanism involved in the down-regulation of miR-22 in oral cancer cells |
| 指導教授: |
吳梨華
Wu, Li-Wha |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | miR-22 、口腔癌 、DNA 甲基化修飾 、p53 、retinoid acid |
| 外文關鍵詞: | miR-22, oral cancer, DNA methylation, p53, retinoid acid |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在許多癌症中,已發現microRNA的失衡和癌症的進展和轉移有關。 CpG island 中的DNA甲基化在抑癌基因的表現量下降中扮演重要的角色,這其中也包含miRNA。 miR-22的已被證明在某些癌症中失衡表現,包括乳癌和多發性骨髓瘤。採用real-time RT-PCR分析,我們也發現了miR-22的表現量在多數口腔癌細胞株和70% 臨床病人檢體中皆是下降。進一步,我們利用CpG island 預測軟體,在pre-miR-22 上游序列發現三個CpG island,1 - 3。 我們選擇兩株miR-22 表現量比較低的口腔癌細胞,處理1 ~ 5 μM的甲基化抑制劑5’-azaC ,5天後萃取出其RNA,並利用 real-time PCR分析其miR-22的表達量。實驗結果顯示口腔癌細胞在處理不同劑量的5’-azaC之後, 皆會誘導miR-22表現量的增加。這結果似乎意味著口腔癌細胞中miR-22 的表現量下降是受到表觀遺傳修飾調節。首先,我們利用bisulfite sequencing PCR (BSP) 分析 CpG island中的CpG sites的甲基化情形,並檢視與miR-22的表現量下降有關的重要區域。我們將最長的CpG island 3(約1.1 kb的長度)分為1 - 5, 5個區域,我們的初步結果顯示CpG island 3中3 - 5區域在某些口腔癌細胞中有DNA甲基化修飾的情形,並且其DNA甲基化的程度可受到5’-azaC處理而下降。接下來,我們利用in vitro methylation 和luciferase assays 探討CpG island 的缺失和DNA甲基化是否影響相對的luciferase活性。啟動子從-558到+2440(轉錄起始點為+1)和其不同截斷區段的序列分別克隆到pGL3-basic載體。我們發現CpG island 3的消失,其啟動子活性顯著下降。 但CpG island 3 的存在與否皆不會影響DNA甲基化抑制啟動子的效力,這顯示non-CpG sites 也具有調節作用。更進一步,發現轉錄因子p53和retinoid acid receptors也參與調節的miR-22啟動子活性。雖然需要更多的研究證實,但這項研究說明了DNA甲基化和轉錄調控參與調控miR-22在口腔癌細胞中失調表現
The deregulation of certain microRNAs has been associated with the progression and metastasis of various cancer types. DNA methylation in the CpG islands plays a crucial role in the down-regulation of tumor suppressor genes, including those encoding miRNAs. MiR-22 has been shown to be deregulated in several cancer types, including breast cancer and multiple myeloma. Using real-time RT-PCR analysis, we also found that miR-22 was down-regulated in the majority of oral cancer cell lines and 70% of the tested clinical specimens when compared with their normal counterparts. Consistent with the notion that DNA methylation might play a role in the gene silencing, we did detect three putative CpG islands, 1 - 3, located upstream from the first nucleotide of pre-miR-22 using CpG island prediction softwares. Two oral cancer lines with low miR-22 expression were treated with a methylation inhibitor, 5’-azaC at 1 ~ 5 M, for 5 days. Total RNA was isolated from the treated cells for real-time quantitative PCR analysis of miR-22 expression. The expression of miR-22 was induced by the inhibitor, suggesting the involvement of epigenetic regulation in the decreased expression of miR-22 in oral cancer cells. First, bisulfate specific PCR coupled with DNA sequencing was used to analyze the methylation status of CpG sites in the putative CpG islands, and pinpoint the critical region related with the silencing of miR-22 expression. Following dividing the longest CpG island 3 (~1.1 kb in length) into 5 regions, 1 - 5, our preliminary data show that only regions 3 to 5 in the putative CpG island are subjected to DNA methylation in certain oral cancer lines, which can be attenuated by 5’-azaC treatment. We next used in vitro methylation and promoter-driven luciferase assays to investigate whether CpG island deletion and DNA methylation affected the relative luciferase activity. A putative promoter segment from -558 to +2440 (transcription start as +1) and its serial truncations were cloned into pGL3-basic vectors. We found a significant reduction of the promoter activity driven by CpG island 3 deletion. DNA methylation suppressed the promoter activity regardless of the presence of CpG island 3, suggesting the involvement of non-island CpG sites in the regulation. Futthermore, the transcription factors including p53 and retinoid acid receptors also participate in the regulation of miR-22 promoter activity. Although more studies are needed, this study implicates that both DNA methylation and transcriptional regulation are involved in the deregulation of miR-22 in oral cancer cells.
VI. References
1. Clayman GL LS, Laramore GE, Hong WK. Head and neck, cancer. In: Jolland JF FE, Bast RC, Kufe DW, Morton DL,, Weichselbaum RR eCM, 4th edn, chapter 105., Philadelphia UWW.
2. Yang CM, Hou YY, Chiu YT, Chen HC, Chu ST, Chi CC, et al. Interaction between tumour necrosis factor-alpha gene polymorphisms and substance use on risk of betel quid-related oral and pharyngeal squamous cell carcinoma in Taiwan. Arch Oral Biol. 2011;56:1162-9.
3. Hunter KD, Parkinson EK, Harrison PR. Profiling early head and neck cancer. Nat Rev Cancer. 2005;5:127-35.
4. Chen YJ, Chang JT, Liao CT, Wang HM, Yen TC, Chiu CC, et al. Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci. 2008;99:1507-14.
5. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. 1995;24:450-3.
6. Angiero F, Berenzi A, Benetti A, Rossi E, Del Sordo R, Sidoni A, et al. Expression of p16, p53 and Ki-67 proteins in the progression of epithelial dysplasia of the oral cavity. Anticancer Res. 2008;28:2535-9.
7. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307-10.
8. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24:2666-72.
9. Babu JM, Prathibha R, Jijith VS, Hariharan R, Pillai MR. A miR-centric view of head and neck cancers. Biochim Biophys Acta. 2011;1816:67-72.
10. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415-28.
11. Shaw R. The epigenetics of oral cancer. Int J Oral Maxillofac Surg. 2006;35:101-8.
12. Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993;53:4477-80.
13. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28:622-9.
14. Walker DR, Bond JP, Tarone RE, Harris CC, Makalowski W, Boguski MS, et al. Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features. Oncogene. 1999;18:211-8.
15. Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60:6788-93.
16. Acin S, Li Z, Mejia O, Roop DR, El-Naggar AK, Caulin C. Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras. J Pathol. 2011;225:479-89.
17. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522-31.
18. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-97.
19. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415-9.
20. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95-8.
21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834-8.
22. Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, et al. Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res. 2011;71:4628-39.
23. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012;10:e1001268.
24. Duverger O, Morasso MI. Epidermal patterning and induction of different hair types during mouse embryonic development. Birth Defects Res C Embryo Today. 2009;87:263-72.
25. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632-42.
26. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97:5237-42.
27. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103:1412-7.
28. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261-82.
29. Cheung HH, Lee TL, Rennert OM, Chan WY. DNA methylation of cancer genome. Birth Defects Res C Embryo Today. 2009;87:335-50.
30. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8:286-98.
31. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424-9.
32. Minor J, Wang X, Zhang F, Song J, Jimeno A, Wang XJ, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol. 2012;48:73-8.
33. Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, Imoto I, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71:5765-78.
34. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902-10.
35. Kawahigashi Y, Mishima T, Mizuguchi Y, Arima Y, Yokomuro S, Kanda T, et al. MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs. J Nihon Med Sch. 2009;76:188-97.
36. Lionetti M, Agnelli L, Mosca L, Fabris S, Andronache A, Todoerti K, et al. Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes Cancer. 2009;48:521-31.
37. Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, et al. An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J. 2010;277:1684-94.
38. Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, et al. microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 2010;103:1215-20.
39. Zhang G, Xia S, Tian H, Liu Z, Zhou T. Clinical significance of miR-22 expression in patients with colorectal cancer. Med Oncol. 2012.
40. Li X, Liu J, Zhou R, Huang S, Chen XM. Gene silencing of MIR22 in acute lymphoblastic leukaemia involves histone modifications independent of promoter DNA methylation. Br J Haematol. 2010;148:69-79.
41. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3:ra29.
42. Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56:1871-9.
43. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18:1427-31.
44. Klug M, Rehli M. Functional analysis of promoter CpG methylation using a CpG-free luciferase reporter vector. Epigenetics. 2006;1:127-30.
45. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333-4.
46. Mongan NP, Gudas LJ. Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation. 2007;75:853-70.
47. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, et al. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell. 1992;68:377-95.
48. Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet. 2011;20:4299-310.
49. Ting Y, Medina DJ, Strair RK, Schaar DG. Differentiation-associated miR-22 represses Max expression and inhibits cell cycle progression. Biochem Biophys Res Commun. 2010;394:606-11.
50. Choong ML, Yang HH, McNiece I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol. 2007;35:551-64.
校內:2022-12-31公開