研究生: |
邱靖鈜 Chiu, Ching-Hung |
---|---|
論文名稱: |
石墨烯中阿哈諾夫波姆效應的量子傳輸模擬 Quantum transport simulation of Aharonov-Bohm effect in graphene |
指導教授: |
劉明豪
Liu, Ming-Hao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 石墨烯 、阿哈諾夫波姆 、克萊因穿隧效應 、量子傳輸模擬 |
外文關鍵詞: | Graphene, Aharanov-Bohm effect, Klein tunneling, Quantum transport simulation |
相關次數: | 點閱:51 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是一個在實驗上可以測試相對論量子力學的一個二維材料,這幾年不只被廣泛地運用在獨特的狄拉克費米子傳輸性質,同時也確定了量子力學在介觀與微觀尺度下的現象。這篇碩士論文啟發於2020 年的一篇實驗文章,利用我們的量子傳輸模擬,考慮零溫下的彈道傳輸,我們考慮了和實驗文章一樣的裝置,同樣在石墨烯下的阿哈諾夫波姆環以及一樣的電閘形狀。在同時有電控閘與磁場的作用下,我們模擬的電導與實驗吻合也確實看見了阿哈諾夫波姆效應。為了測量克萊因穿隧效應,我們提出了實驗上可製作的新型電閘形狀,使其的介面垂直於下半環。基於這個新的設計,我們展現了電子因為克萊因穿隧效應屏蔽掉了非垂直入射的模態,可以更清楚的看見阿哈諾夫波姆震盪的週期。
Graphene, ideal testbed of relativistic quantum mechanics, has been widely used to explore not only the exotic transport properties of Dirac fermions but also to confirm classic quantummechanical phenomena such as the Aharanov-Bohm effect. Motivated by a recent experiment, here we perform quantum transport simulations in the ballistic limit at zero temperature, considering an Aharanov-Bohm ring made of graphene with the same sample and gate geometry as in the experiment. The preliminary results of our simulations such as the gate voltage and magnetic field dependence of the two-terminal conductance are rather consistent with the experiment, confirming the observation of Aharanov-Bohm effect in the experiment. To probe the effect of Klein tunneling, however, we propose a modified design using a local gate that makes pn interfaces perpendicular to the arm of the ring, different from the experiment. Based on our new design, we show that Klein tunneling may sharpen the Aharanov-Bohm oscillation frequency due to the screening of the transverse modes.
[1] L.Banszerus A.Epping K.Watanabe T.Taniguchi M.I.Katsnelson F.Hassler J.Dauber, K.J.A.Reijnders and C.Stampfer. Exploiting aharonov bohm oscillations to probe klein tunneling in tunable pn junctions in graphene. arxiv.
[2] Ming-Hao Liu, Jan Bundesmann, and Klaus Richter. Spin-dependent Klein tunneling in graphene: Role of rashba spin-orbit coupling. Phys. Rev. B, 85:085406, Feb 2012.
[3] mathematica. https://www.wolframalpha.com/input/?i=mathematica.
[4] Iwakiri. Gate-defined electron interferometer in bilayer graphene. Nano Letters., 22, 2022.
[5] Shiang-Bin Chiu, Alina Mreńca-Kolasińska, Ka Long Lei, Ching-Hung Chiu, Wun-Hao Kang, Szu-Chao Chen, and Ming-Hao Liu. Manipulating electron waves in graphene using carbon nanotube gating. Phys. Rev. B, 105:195416, May 2022.
[6] G. P. Parravicini G. Grosso. Solid State Physics. ACADEMIC PRESS, 2000.
[7] Datta S. Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1995.
[8] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the quantum theory. Phys. Rev., 115:485–491, Aug 1959.
[9] Richard A. Webb and Sean Washburn. Quantum interference fluctuations in disordered metals. Physics Today, 41, Dec 1988.
[10] Montambaux G. Akkermans, E. Electronic Transport in Mesoscopic Systems. Cambridge, Cambridge University Press, 2007.
[11] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, Jan 2009.
[12] P.E. Allain and J.N Fuchs. Klein tunneling in graphene: optics with massless electrons. Eur. Phys. J. B, 83(1):301, Oct 2011.
[13] T. Tiras E. Arslan S. Cakmakyapan O. Kazar J. Hassan E. Janzén E. Ozbay E. Tiras, S. Ardali. Effective mass of electron in monolayer graphene: Electron phonon interaction. Journal of Applied Physics, page 043708, 2013.
[14] Amir Natan Viktor Ariel. Electron effective mass in graphene. arXiv, 2012.
[15] Ming-Hao Liu. Theory of carrier density in multigated doped graphene sheets with quantum correction. Phys. Rev. B, 87:125427, Mar 2013.
[16] G. Lee, G. Park, and Leem H. Observation of negative refraction of dirac fermions in graphene. Nat. Phys., 11:925–929, Sep 2015. 48
[17] Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Waintal. Kwant: a software package for quantum transport. New Journal of Physics, 16(6):063065, jun 2014.
[18] Christophe Geuzaine and Jean François Remacle. Gmsh: A 3d finite element mesh generator with built in pre and post processing facilities. International Journal for Numerical Methods in Engineering, 79:1309–1331, May 2009.
[19] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated solution of differential equations by the finite element method. 2012.
[20] Daniel S. Fisher and Patrick A. Lee. Relation between conductivity and transmission matrix. Phys. Rev. B, 23:6851–6854, Jun 1981.
[21] Michael Wimmer. Quantum transport in nano-structures: From computational concepts to spintronics in graphene and magnetic tunnel junctions. Universitätsverlag, Regensburg, 2009.
[22] Ming-Hao Liu, Peter Rickhaus, Péter Makk, Endre Tóvári, Romain Maurand, Fedor Tkatschenko, Markus Weiss, Christian Schönenberger, and Klaus Richter. Scalable tight-binding model for graphene. Phys. Rev. Lett., 114:036601, Jan 2015.
[23] J. C. Slater and G. F. Koster. Simplified lcao method for the periodic potential problem. Phys. Rev., 94:1498–1524, Jun 1954.
[24] K. Lendi. Extension of the slater-koster tables for tight-binding calculations to f electrons. Phys. Rev. B, 9:2433–2440, Mar 1974.
[25] K. Lendi. Erratum: Extension of the slater-koster tables for tight binding calculations to f electrons. Phys. Rev. B, 10:1768–1768, Aug 1974.
[26] A. K. McMahan. Two-center s− f slater-koster integrals. Phys. Rev. B, 58:4293–4303, Aug 1998.
[27] Siegfried Weisenburger Harald Giessen Klaus. v. Klitzing Markus Lippitz Jurgen H. Smet Dong-Hun Chae, Tobias Utikal. Excitonic fano resonance in freestanding graphene. arXiv, Jan 2011.
[28] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the dirac equation. Phys. Rev. B, 73:235411, Jun 2006.
[29] Motohiko Ezawa. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B, 73:045432, Jan 2006.
[30] Katsunori Wakabayashi et al. Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of advanced material, 11:054504, October 2010.
[31] Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett.