| 研究生: |
翁志遠 Weng, Chih-Yuan |
|---|---|
| 論文名稱: |
迴路式熱管之新型分析模式發展與實驗驗證 Development and Experimental Verification of Novel Analytical Model of Loop Heat Pipe |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 迴路式熱管 、理論分析 、穩態模型 、兩相流 、冷凝流譜 、可視化研究 、導管長度 |
| 外文關鍵詞: | loop heat pipe, theoretical analysis, steady-state model, two-phase flow, condensing flow map, visualized studies, bayonet length |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
迴路式熱管(Loop Heat Pipe, LHP)是一種利用毛細結構產生之毛細力驅動工作流體循環的被動傳熱裝置。本研究提出考量冷凝管兩相流物理機制的新型迴路式熱管模型,稱為基於兩相流流譜模式之迴路式熱管穩態模型(Two-Phase Flow Pattern based Steady-State Model )。首先,使用系統的守恆方程式之理論模型評估LHP的特性,而在計算LHP內兩相流特性的同時,則採用適當的二相流流譜,其特別考慮了冷凝管中流動狀態。另將本研究提出兩相流流譜模式迴路式熱管模型之模擬結果與文獻實驗結果比較後,在固定熱傳導模式(Fixed Conductance Modes)之平均絕對百分比誤差(Mean Absolute Percentage Error, MAPE)僅2.00 %,方均根誤差(Root-mean-square error, RMSE)為0.6 ºC。此結果顯示透過新提出迴兩相流流譜模式之迴路式熱管穩態模型,因考慮到1 mm至5mm的冷凝管直徑之表面張力對兩相流流動型態之影響,可以更準確地預測LHP的特性。
此外,為驗證新型兩相流流譜模式穩態模型,本研究亦設計不同幾何尺寸之迴路式熱管,並將其實驗結果與模型預測結果比較。結果顯示,實驗和理論模型之間的平均絕對百分比誤差結果,分別為蒸發器溫度:7.44%(RMSE為6.87 ºC),補償室入口溫度:9.85%(RMSE為3.45 ºC)及補償室溫度:14.57%(RMSE為6.14 ºC)。而在冷凝水出口溫度之RMSE及MAPE則分別為0.75 ºC及2.28%。另外,從實驗結果顯示LHP系統能將近90%的熱能傳到冷凝端,其意味著僅有10%的熱能散失到環境中,而系統總熱阻最小值為0.7 ºC/W,這些實驗結果與本研究提出之模型預測結果皆相近。
另經比較理論模型與LHP內的冷凝器可視化實驗獲得之兩相流流譜形式結果,顯示冷凝管內的主要流譜為密度分離流(Stratified Flow)及波浪介面密度分離流(Stratified Wavy Flow),除間歇流(Intermittent Flow)未能準確預測外,模型預測與實驗中冷凝管內所觀察的流動狀態相似。另外,經比較模擬結果與可視化實驗所觀察的冷凝器兩相流之長度,顯示實際長度較模擬預測之長度約短1至9公分。
此外,本研究亦以實驗方式探討LHP內導管長度影響。從不同長度導管的LHP實驗結果,若導管長度不夠長, LHP系統會產生蒸發器溫度驟升和操作失敗的問題。其原因是由於導管長度不同,LHP內工作流體回流到補償室的位置也不一樣。如果將導管長度深入至LHP毛細蕊內部,過冷的工作流體可以直接到達毛細芯,提供蒸發器所需工作流體及冷凝毛細蕊中因熱洩漏所產生的氣泡。由於導管具有排出並冷凝毛細蕊內部的蒸汽氣泡之特點, 因此,深入至LHP毛細蕊內部之導管長度的LHP具有最佳之熱性能及良好的可靠度。
本研究考慮兩相流流譜之特性,提出了一個新型之迴路式熱管穩態模型,並透過實驗與模擬分析之方式,驗證基於兩相流流譜之迴路式熱管穩態模型之準確性,可提供在迴路式熱管設計及性能探討之參考。
Loop heat pipes (LHPs) are passive heat transport devices using capillary structures to circulate the working fluid. In this study, a new proposed model of LHP considered the two-phase physical mechanisms in the condenser was developed, named two-phase flow pattern based steady-state model. Firstly, several theoretical models based on conservation equations in the system are used to evaluate the characteristics of LHPs. In addition, while computing the characteristics of two-phase flow within LHP, the progression of the flow regimes in the condensing tube is specially considered by adopting proper two-phase flow pattern map. The comparison between the previous experimental and theoretical results of new proposed model achieves the smallest mean absolute percentage error (MAPE) of 2.00 % and root-mean-square error (RMSE) of 0.6 ºC in the fixed conductance mode among all existing models. It has been shown that the characteristics of LHP can be better predicted by using current new proposed model with the consideration of the surface-tension influence on two-phase flow pattern map within condensation tube diameter ranging from 1 mm to 5 mm.
In addition, in order to verify two-phase flow pattern based model of LHP, the prediction results are compared with the experimental results of different geometry dimension of LHP designed in this study. The results show that MAPE between experiments and theoretical modeling equals 7.44 % in the evaporator temperature (RMSE=6.87 ºC), 9.85 % in the temperature of the inlet temperature of the compensation chamber (RMSE=3.45 ºC), and 14.57 % in the compensation chamber temperature (RMSE=6.14 ºC). And the RMSE and MAPE of the outlet temperature of cooling water are only 0.75 ºC and 2.28 %, respectively. Furthermore, the thermal performance of LHP from the experiment show system efficiency can transfer almost 90 % of heat load to condenser, which means only 10 % of heat load leaks to ambient, and minimum total resistance of the LHP was also obtained, 0.7 ºC/W. These experimental results are similar to the predictions by present model.
Moreover, the flow regimes obtained from the theoretical model are also compared with flow visualization experiments within LHP in this study. The flow maps by the current model predicts the stratified wavy flow and stratified flow are the major flow patterns in the condenser of present LHP, and are similar to the observed flow regime results in the condensing channel except for the absence prediction of intermittent flow. Also, the length of the two phase regions in the condenser observed in the experiment are also compared with the results from the modeling. The results present that the experimental values have about 1 to 9 cm shorter length in comparison with the analytical results.
Also, the bayonet length effects of the LHP are also discussed by experimentally. From the results of LHPs with different length of bayonet, the problems of evaporator temperature steep rising and failure operation of LHP are discovered if the length of bayonet is not long enough. Owing to the different length of bayonet, the working fluid flows back to the compensation chamber in different locations. Cold working fluids can directly reach the wick core for offering the working fluid of evaporator and condensing bubbles generated in the wick core if the length of bayonet is inserted into the wick core of LHP. It is obviously that due to the feature of bayonet, vent and condense the vapor bubbles inside the wick core, the LHP with the bayonet, which inserted into the wick core of LHP, has best thermal performance and more reliable than others.
In this study, with considering the characteristics of the two-phase flow regimes, a new steady-state model of loop heat pipe is proposed. The accuracy of the loop heat pipe steady-state model based on the two-phase flow patterns is verified by using experimental studies. Through the new proposed analytical modeling, the characteristics of LHP system can be better understood on the design of LHP.
[1] H. Sutter, The free lunch is over: a fundamental turn toward concurrency in software, Dr. Dobb's Journal, 30 (2005) 202-210.
[2] M.K. Patterson, The effect of data center temperature on energy efficiency, in: 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, pp. 1167-1174.
[3] X.P. Wu, M. Mochizuki, K. Mashiko, T. Nguyen, T. Nguyen, V. Wuttijumnong, G. Cabusao, R. Singh, A. Akbarzadeh, Cold energy storage systems using heat pipe technology for cooling data centers, Frontiers in Heat Pipes (FHP), 2 (2011).
[4] S. Chalise, A. Golshani, S.R. Awasthi, S. Ma, B.R. Shrestha, L. Bajracharya, S. Wei, R. Tonkoski, Data center energy systems: Current technology and future direction, in: 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1-5.
[5] Z. Li, S.G. Kandlikar, Current status and future trends in data-center cooling technologies, Heat Transfer Engineering, 36 (2015) 523-538.
[6] I. Mudawar, Recent advances in high-flux, two-phase thermal management, Journal of Thermal Science and Engineering Applications, 5 (2013) 021012-021012-021015.
[7] K. Shukla, Heat pipe for aerospace applications—an overview, Journal of Electronics Cooling and Thermal Control, 5 (2015) 1.
[8] X. Tang, L. Sha, H. Zhang, Y. Ju, A review of recent experimental investigations and theoretical analyses for pulsating heat pipes, Frontiers in Energy, 7 (2013) 161-173.
[9] D. Butler, J. Ku, T. Swanson, Loop heat pipes and capillary pumped loops-an applications perspective, in: AIP Conference Proceedings, Vol. 608, 2002, pp. 49-56.
[10] Heat transfer device,US Patent 2350348, 1944.
[11] G. Grover, T. Cotter, G. Erickson, Structures of very high thermal conductance, Journal of Applied Physics, 35 (1964) 1990-1991.
[12] Evaporation-condensation heat transfer device,US Patent 3229759, 1966.
[13] R. Senthilkumar, S. Vaidyanathan, B. Sivaraman, Performance analysis of heat pipe using copper nanofluid with aqueous solution of n-butanol, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 5 (2011) 251-256.
[14] R. Manimaran, K. Palaniradja, N. Alagumurthi, J. Hussain, Factors affecting the thermal performance of heat pipe–a review, Journal of Engineering Research and Studies, 3 (2012) 20-24.
[15] Heat transfer apparatus,US Patent 4515209, 1985.
[16] C.-C. Yeh, C.-N. Chen, Y.-M. Chen, Heat transfer analysis of a loop heat pipe with biporous wicks, International Journal of Heat and Mass Transfer, 52 (2009) 4426-4434.
[17] Y.F. Maydanik, S.V. Vershinin, M.A. Korukov, J.M. Ochterbeck, Miniature loop heat pipes - a promising means for cooling electronics, IEEE Transactions on Components and Packaging Technologies, 28 (2005) 290-296.
[18] R. Singh, A. Akbarzadeh, C. Dixon, M. Mochizuki, R.R. Riehl, Miniature loop heat pipe with flat evaporator for cooling computer CPU, IEEE Transactions on Components and Packaging Technologies, 30 (2007) 42-49.
[19] Y.F. Maydanik, S.V. Vershinin, V.G. Pastukhov, S. Fried, Loop heat pipes for cooling systems of servers, IEEE Transactions on Components and Packaging Technologies, 33 (2010) 416-423.
[20] H. Ishikawa, T. Nomura, Y. Saito, H. Kawasaki, A. Okamoto, R. Hatakenaka, Heat transfer characteristics of a reservoir embedded loop heat pipe, Heat Transfer—Asian Research, 40 (2011) 269-285.
[21] S. Becker, S. Vershinin, V. Sartre, E. Laurien, J. Bonjour, Y.F. Maydanik, Steady state operation of a copper–water LHP with a flat-oval evaporator, Applied Thermal Engineering, 31 (2011) 686-695.
[22] E. Bazzo, M. Nogoseke, Capillary pumping systems for solar heating application, Applied Thermal Engineering, 23 (2003) 1153-1165.
[23] X. Zhang, X. Zhao, J. Xu, X. Yu, Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system, Applied Energy, 102 (2013) 1229-1245.
[24] T. Kaya, T. Hoang, Mathematical modeling of loop heat pipes and eperimental validation, Journal of Thermophysics and Heat Transfer, 13 (1999) 314-320.
[25] T. Kaya, J. Ku, Thermal operational characteristics of a small-loop heat pipe, Journal of Thermophysics and Heat Transfer, 17 (2003) 464-470.
[26] K. Nakamura, K. Odagiri, H. Nagano, Study on a loop heat pipe for a long-distance heat transport under anti-gravity condition, Applied Thermal Engineering, 107 (2016) 167-174.
[27] P.-Y.A. Chuang, J.M. Cimbala, J.S. Brenizer, C.T. Conroy, A.A. El-Ganayni, D.R. Riley, Comparison of Experiments and 1-D Steady-State Model of a Loop Heat Pipe, ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, (November, 2002).
[28] P.-Y. Chuang, An improved steady-state model of loop heat pipes based on experimental and theoretical analyses, (Ph.D. Thesis), The Pennsylvania State University, (December 2003).
[29] L. Bai, G. Lin, H. Zhang, D. Wen, Mathematical modeling of steady-state operation of a loop heat pipe, Applied Thermal Engineering, 29 (2009) 2643-2654.
[30] F.-C. Lin, B.-H. Liu, C.-T. Huang, Y.-M. Chen, Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure, International Journal of Heat and Mass Transfer, 54 (2011) 4621-4629.
[31] B. Siedel, V. Sartre, F. Lefèvre, Literature review: Steady-state modelling of loop heat pipes, Applied Thermal Engineering, 75 (2015) 709-723.
[32] J.M. Cimbala, J.S. Brenizer, A.P.-Y. Chuang, S. Hanna, C. Thomas Conroy, A.A. El-Ganayni, D.R. Riley, Study of a loop heat pipe using neutron radiography, Applied Radiation and Isotopes, 61 (2004) 701-705.
[33] D. Mishkinis, G. Wang, D. Nikanpour, A laboratory setup for observation of loop heat pipe characteristics, 36th International Conference on Environmental Systems, Norfolk, Virginia, (July 2006).
[34] G. Wang, D. Nikanpour, Visual Observations of Flow and Phase Phenomena in Loop Heat Pipes, AIP Conference Proceedings, 914 (2007) 291-298.
[35] D.C. Mo, G.S. Zou, S.S. Lu, Visual research on the heat and mass transfer in a flat loop heat pipe, 10th International Heat Pipe Symposium, Taipei, Taiwan, (November 2011).
[36] T. Kobayashi, T. Ogushi, S. Haga, E. Ozaki, M. Fujii, Heat transfer performance of a flexible looped heat pipe using R134a as a working fluid: Proposal for a method to predict the maximum heat transfer rate of FLHP, Heat Transfer—Asian Research, 32 (2003) 306-318.
[37] T. Ogushi, A. Yao, J.J. Xu, H. Masumoto, M. Kawaji, Heat transport characteristics of flexible looped heat pipe under micro-gravity condition, Heat Transfer—Asian Research, 32 (2003) 381-390.
[38] J. Boo, W. Chung, Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick, Journal of Mechanical Science and Technology, 19 (2005) 1052-1061.
[39] R.R. Riehl, N.d. Santos, Performance improvement in loop heat pipe using primary wick with circumferential grooves, SAE Paper No. 2006-01-2172,
[40] L.L. Vasiliev, Advanced loop heat pipe evaporator with ceramic nanostructured composite of alumina, alumina-silica oxide as a wick structure, SAE Paper No. 2007-01-3192,
[41] S.-C. Wu, J.-C. Peng, S.-R. Lai, C.-C. Yeh, Y.-M. Chen, Investigation of the effect of heat leak in loop heat pipes with flat evaporator, in: Microsystems, Packaging, Assembly and Circuits Technology Conference, 2009. IMPACT 2009. 4th International, 2009, pp. 348-351.
[42] H. Nagano, F. Fukuyoshi, H. Ogawa, H. Nagai, Development of an experimental small loop heat pipe with polytetrafluoroethylene wicks, Journal of Thermophysics and Heat Transfer, 25 (2011) 547-552.
[43] H. Nagano, M. Nishigawara, Small loop heat pipe with plastic wick for electronics cooling, Japanese Journal of Applied Physics, 50 (2011) 11RF02.
[44] M. Nishikawara, H. Nagano, Parametric experiments on a miniature loop heat pipe with PTFE wicks, International Journal of Thermal Sciences, 85 (2014) 29-39.
[45] S.-C. Wu, T.-W. Gu, D. Wang, Y.-M. Chen, Study of PTFE wick structure applied to loop heat pipe, Applied Thermal Engineering, 81 (2015) 51-57.
[46] Y.F. Maydanik, Review - Loop heat pipes, Applied Thermal Engineering, 25 (2005) 635-657.
[47] J. Ku, Operating characteristics of loop heat pipes, 29th International Conference on Environmental System, Denver, Colorado, (July 1999).
[48] J. Ku, Thermodynamic aspects of capillary pumped loop operation, in: 6th Joint Thermophysics and Heat Transfer Conference, American Institute of Aeronautics and Astronautics, 1994.
[49] J. Ku, Pressure profiles in a loop heat pipe under gravity influence, 45th International Conference on Environmental Systems, Bellevue, Washington, United States, ( 12-16 July).
[50] H. Nagano, M. Nishikawara, F. Fukuyoshi, H. Nagai, H. Ogawa, Thermal vacuum testing of a small loop heat pipe with a PTFE wick for spacecraft thermal control, Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 10 (2012) Pc_27-Pc_33.
[51] T. Shioga, Y. Mizuno, Micro loop heat pipe for mobile electronics applications, in: 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2015, pp. 50-55.
[52] A.A. Delil, Y.F. Maydanik, V.G. Pastukhov, M.A. Chernyshova, Development and test results of a multi‐evaporator‐condenser loop heat pipe, in: AIP Conference Proceedings, Vol. 654, AIP Publishing, 2003, pp. 42-48.
[53] J. Ku, Heat load sharing in a capillary pumped loop with multiple evaporators and multiple condensers,
[54] J. Ku, L. Ottenstein, D. Douglas, M. Pauken, G. Birur, Miniature loop heat pipe with multiple evaporators for thermal control of small spacecraft, Government Microcircuit Applications and Critical Technology Conference, Las Vegas, NV, (April 4-7, 2005).
[55] X. Chang, H. Nagano, Experimental investigation on the effection of flow regulator in a multiple evaporators/condensers loop heat pipe with plastic porous structure, Journal of Power and Energy Engineering, 02 (2014) 49-56.
[56] A.A.M. Delil, Tutorial on quantification of differences between single‐ and two‐component two‐phase flow and heat transfer, AIP Conference Proceedings, 654 (2003) 3-16.
[57] M.K. Dobson, Heat transfer and flow regimes during condensation in horizontal tubes, in, Air Conditioning and Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign., 1994.
[58] M.E. Ewing, J.J. Weinandy, R.N. Christensen, Observations of two-phase flow patterns in a horizontal circular channel, Heat Transfer Engineering, 20 (1999) 9-14.
[59] G. Breber, J.W. Palen, J. Taborek, Prediction of horizontal tubeside condensation of pure components using flow regime criteria, Journal of Heat Transfer, 102 (1980) 471-476.
[60] J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas—liquid flow in horizontal pipes, International Journal of Multiphase Flow, 1 (1974) 537-553.
[61] Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE Journal, 22 (1976) 47-55.
[62] T. Tandon, H. Varma, C. Gupta, A new flow regimes map for condensation inside horizontal tubes, Journal of Heat Transfer, 104 (1982) 763-768.
[63] T. Fukano, A. Kariyasaki, M. Kagawa, Flow patterns and pressure drop in isothermal gas-liquid concurrent flow in a horizontal capillary tube, Transactions of the Japan Society of Mechanical Engineers Series B, 56 (1990) 2318-2326.
[64] J.W. Coleman, S. Garimella, Characterization of two-phase flow patterns in small diameter round and rectangular tubes, International Journal of Heat and Mass Transfer, 42 (1999) 2869-2881.
[65] H. Ide, A. Kariyasaki, T. Fukano, Fundamental data on the gas–liquid two-phase flow in minichannels, International Journal of Thermal Sciences, 46 (2007) 519-530.
[66] A. Tabatabai, A. Faghri, A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal miniature and micro tubes, Journal of Heat Transfer, 123 (2001) 958-968.
[67] A. Cavallini, G. Censi, D. Del Col, L. Doretti, G.A. Longo, L. Rossetto, Condensation of halogenated refrigerants inside smooth tubes, HVAC&R Research, 8 (2002) 429-451.
[68] J.R. Thome, J. El Hajal, A. Cavallini, Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes, International Journal of Heat and Mass Transfer, 46 (2003) 3365-3387.
[69] J. El Hajal, J.R. Thome, A. Cavallini, Condensation in horizontal tubes, part 1: two-phase flow pattern map, International Journal of Heat and Mass Transfer, 46 (2003) 3349-3363.
[70] D. Mishkinis, J.M. Ochterbeck, Analysis of tubeside condensation in microgravity and earth-normal gravity, Proceedings of the Fifth Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, (September 2003).
[71] A.A. Adoni, A. Ambirajan, V.S. Jasvanth, D. Kumar, P. Dutta, K. Srinivasan, Thermohydraulic modeling of capillary pumped loop and loop heat pipe, Journal of Thermophysics and Heat Transfer, 21 (2007) 410-421.
[72] R.R. Riehl, T.C.P.A. Siqueira, Heat transport capability and compensation chamber influence in loop heat pipes performance, Applied Thermal Engineering, 26 (2006) 1158-1168.
[73] V.G. Pastukhov, Y.F. Maidanik, Y.G. Fershtater, Adaption of loop heat pipes to zero-g conditions, Proceedings of the Sixth European Symposium on Space Environmental Control Systems, ESA SP-400, European Space Agency, Noordwijk, The Netherlands, (20-22 May, 1997).
[74] K.R. Wrenn, S.J. Krein, T.T. Hoang, R.D. Allen, Verification of a Transient Loop Heat Pipe Model, SAE Paper No. 1999-01-2010,
[75] T. Kaya, J. Ku, Performance characteristics of a terrestrial Loop Heat Pipe, in: 38th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, 2000.
[76] J. Ku, L. Ottenstein, M. Kobel, P. Rogers, T. Kaya, Temperature oscillations in loop heat pipe operation, AIP Conference Proceedings, 552 (2001) 255-262.
[77] J.I. Rodriguez, A. Na-Nakornpanom, Investigation of transient temperature oscillations of a propylene loop heat pipe, SAE Paper No. 2001-01-2235,
[78] A. Delil, V. Baturkin, Miniature loop heat pipe with a flat evaporator-Thermal modelling & Experimental results, in, NLR-TP-2002-273, 2002.
[79] J. Ku, L. Ottenstein, P. Rogers, K. Cheung, Capillary limit in a loop heat pipe with a single evaporator, SAE Paper No. 2002-01-2502,
[80] S.V. Oost, B. Mullender, G. Bekaert, J.C. Legros, Secondary wick operation principle and performance mapping in LHP and FLHP evaporators, AIP Conference Proceedings, 608 (2002) 94-103.
[81] V.G. Pastukhov, Y.F. Maidanik, C.V. Vershinin, M.A. Korukov, Miniature loop heat pipes for electronics cooling, Applied Thermal Engineering, 23 (2003) 1125-1135.
[82] D. Mishkinis, G. Wang, D. Nikanpour, E. MacDonald, T. Kaya, Steady-state and transient loop heat pipe performance during periodic heating cycles, in: Proceedings of 13th International Heat Pipe Conference, 2004, pp. 71-77.
[83] C. Chu, S. Wu, P. Chen, Y. Chen, Design of miniature loop heat pipe, Heat Transfer—Asian Research, 33 (2004) 42-52.
[84] C.-C. Hsu, S.-W. Kang, T.-F. Hou, Performance testing of micro loop heat pipes, Tamkang Journal of Science and Engineering, 8 (2005) 123-132.
[85] R.R. Riehl, T. Dutra, Development of an experimental loop heat pipe for application in future space missions, Applied Thermal Engineering, 25 (2005) 101-112.
[86] Y. Chen, M. Groll, R. Mertz, Y.F. Maydanik, S.V. Vershinin, Steady-state and transient performance of a miniature loop heat pipe, International Journal of Thermal Sciences, 45 (2006) 1084-1090.
[87] H. Nagano, J. Ku, Capillary limit of a miniature loop heat pipe with multiple evaporators and multiple condensers, in: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, American Institute of Aeronautics and Astronautics, 2006.
[88] V.G. Pastukhov, Y.F. Maydanik, Low-noise cooling system for PC on the base of loop heat pipes, Applied Thermal Engineering, 27 (2007) 894-901.
[89] R.R. Riehl, N.d. Santos, Thermal characteristics of a flat evaporator miniature loop heat pipe, SAE Paper No. 2007-01-3195,
[90] S.V. Vershinin, Y.F. Maydanik, Investigation of pulsations of the operating temperature in a miniature loop heat pipe, International Journal of Heat and Mass Transfer, 50 (2007) 5232-5240.
[91] R. Singh, A. Akbarzadeh, M. Mochizuki, Operational characteristics of a miniature loop heat pipe with flat evaporator, International Journal of Thermal Sciences, 47 (2008) 1504-1515.
[92] V.V. Vlassov, R.R. Riehl, Mathematical model of a loop heat pipe with cylindrical evaporator and integrated reservoir, Applied Thermal Engineering, 28 (2008) 942-954.
[93] C.C. Yeh, B.H. Liu, Y.M. Chen, A study of loop heat pipe with biporous wicks, Heat and Mass Transfer, 44 (2008) 1537-1547.
[94] B.P. d’Entremont, J.M. Ochterbeck, Investigation of loop heat pipe startup using liquid core visualization, (2008) 387-393.
[95] A.A. Adoni, A. Ambirajan, V.S. Jasvanth, D. Kumar, P. Dutta, Effects of mass of charge on loop heat pipe operational characteristics, Journal of Thermophysics and Heat Transfer, 23 (2009) 346-355.
[96] G.P. Celata, M. Cumo, M. Furrer, Experimental tests of a stainless steel loop heat pipe with flat evaporator, Experimental Thermal and Fluid Science, 34 (2010) 866-878.
[97] J. Li, D. Wang, G.P. Peterson, Experimental studies on a high performance compact loop heat pipe with a square flat evaporator, Applied Thermal Engineering, 30 (2010) 741-752.
[98] H. Nagano, F. Fukuyoshi, H. Ogawa, H. Nagai, Development of an experimental small loop heat pipe with PTFE wick, in: 40th International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics, 2010.
[99] X.F. Zhang, S.F. Wang, Experimental Investigation of Heat Transfer Performance of a Miniature Loop Heat Pipe with Flat Evaporator, Applied Mechanics and Materials, 71-78 (2011) 3806-3809.
[100] Z. Liu, D. Gai, H. Li, W. Liu, J. Yang, M. Liu, Investigation of impact of different working fluids on the operational characteristics of miniature LHP with flat evaporator, Applied Thermal Engineering, 31 (2011) 3387-3392.
[101] J. Ku, K. Paiva, M. Mantelli, Loop heat pipe operation using heat source temperature for set point control, Paper No. AIAA, 5122 (2011) 17-21.
[102] X.H. Nguyen, B.H. Sung, J. Choi, S.R. Ryoo, H.S. Ko, C. Kim, Study on heat transfer performance for loop heat pipe with circular flat evaporator, International Journal of Heat and Mass Transfer, 55 (2012) 1304-1315.
[103] J. Choi, B. Sung, J. Yoo, C. Kim, D.-A. Borca-Tasciuc, Enhanced miniature loop heat pipe cooling system for high power density electronics, Journal of Thermal Science and Engineering Applications, 4 (2012) 021008.
[104] B.B. Chen, Z.C. Liu, W. Liu, J.G. Yang, H. Li, D.D. Wang, Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator, International Journal of Heat and Mass Transfer, 55 (2012) 2204-2207.
[105] J. Xu, Y. Zou, D. Yang, M. Fan, Development of biporous Ti3AlC2 ceramic wicks for loop heat pipe, Materials Letters, 91 (2013) 121-124.
[106] D.-c. Mo, G.-s. Zou, S.-s. Lu, L.W. Zhang, A fow visualization study on the temperature oscillations inside a loop heat pipe with flat evaporator, ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Burlingame, California, USA, (July 16-18, 2013).
[107] Z.R. Lin, W.Z. Lin, L.W. Zhang, S.F. Wang, An experimental study on applying miniature loop heat pipes for laptop PC cooling, in: Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2013 29th Annual IEEE, 2013, pp. 154-158.
[108] X. Zhang, J. Shen, P. Xu, X. Zhao, Y. Xu, Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions, Applied Energy, 135 (2014) 20-34.
[109] J. Xu, L. Zhang, H. Xu, J. Zhong, J. Xuan, Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks, International Journal of Heat and Mass Transfer, 72 (2014) 378-387.
[110] M. Taketani, H. Nagai, Effects of a secondary wick on the thermal performance of a loop heat pipe, in, 44th International Conference on Environmental Systems, Tucson, Arizona, 2014.
[111] M. Mitomi, H. Nagano, Long-distance loop heat pipe for effective utilization of energy, International Journal of Heat and Mass Transfer, 77 (2014) 777-784.
[112] L. Bai, G. Lin, H. Zhang, D. Wen, Effect of evaporator tilt on the operating temperature of a loop heat pipe without a secondary wick, International Journal of Heat and Mass Transfer, 77 (2014) 600-603.
[113] S.-C. Wu, D. Wang, W.-J. Lin, Y.-M. Chen, Investigating the effect of powder-mixing parameter in biporous wick manufacturing on enhancement of loop heat pipe performance, International Journal of Heat and Mass Transfer, 89 (2015) 460-467.
[114] Y. Matsuda, H. Nagano, S. Okazaki, H. Ogawa, H. Nagai, Visualization of loop heat pipe with multiple evaporators under microgravity, in, 45th International Conference on Environmental Systems, 2015.
[115] W. Zhou, W. Ling, L. Duan, K.S. Hui, K.N. Hui, Development and tests of loop heat pipe with multi-layer metal foams as wick structure, Applied Thermal Engineering, 94 (2016) 324-330.
[116] Y. Zhao, S. Chang, W. Zhang, B. Yang, Experimental research on thermal characteristics of loop heat pipe with liquid guiding holes, Applied Thermal Engineering, 101 (2016) 231-238.
[117] N. Putra, B. Ariantara, R.A. Pamungkas, Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application, Applied Thermal Engineering, 99 (2016) 784-789.
[118] T. Tharayil, L.G. Asirvatham, V. Ravindran, S. Wongwises, Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines, Applied Thermal Engineering, 106 (2016) 588-600.
[119] X. Wang, J. Wei, Visual investigation on startup characteristics of a novel loop heat pipe, Applied Thermal Engineering, 105 (2016) 198-208.
[120] T. Tharayil, L.G. Asirvatham, V. Ravindran, S. Wongwises, Thermal performance of miniature loop heat pipe with graphene–water nanofluid, International Journal of Heat and Mass Transfer, 93 (2016) 957-968.
[121] S. Hong, S. Wang, Z. Zhang, Multiple orientations research on heat transfer performances of Ultra-Thin Loop Heat Pipes with different evaporator structures, International Journal of Heat and Mass Transfer, 98 (2016) 415-425.
[122] T. Tharayil, L.G. Asirvatham, M.J. Dau, S. Wongwises, Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study, International Journal of Heat and Mass Transfer, 106 (2017) 407-421.
[123] M. Nishikawara, K. Otani, Y. Ueda, H. Yanada, Fabrication and visualization of loop-heat-pipe evaporators using transoarent tubes, in: Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS, Jeju Island, Korea, 2017.
[124] M. Nishikawara, H. Nagano, Optimization of wick shape in a loop heat pipe for high heat transfer, International Journal of Heat and Mass Transfer, 104 (2017) 1083-1089.
[125] V.S. Jasvanth, A.A. Adoni, V. Jaikumar, A. Ambirajan, Design and testing of an ammonia loop heat pipe, Applied Thermal Engineering, 111 (2017) 1655-1663.
[126] J. He, J. Miao, L. Bai, G. Lin, H. Zhang, D. Wen, Effect of non-condensable gas on the startup of a loop heat pipe, Applied Thermal Engineering, 111 (2017) 1507-1516.
[127] K. Fukushima, H. Nagano, New evaporator structure for micro loop heat pipes, International Journal of Heat and Mass Transfer, 106 (2017) 1327-1334.
[128] A. Faghri, Heat pipe science and technology, Global Digital Press, 1995.
[129] T.T. Hoang, Stability theory for loop heat pipe design, analysis and operation, in, 45th International Conference on Environmental Systems, 2015.
[130] J.P. Holman, Heat transfer, McGraw Hill Book Company, 2004.
[131] G. Nema, S. Garimella, B.M. Fronk, Flow regime transitions during condensation in microchannels, International Journal of Refrigeration, 40 (2014) 227-240.
[132] P. Griffith, K.S. Lee, The stability of an annulus of liquid in a tube, Journal of Basic Engineering, 86 (1964) 666-668.
[133] R. Singh, A. Akbarzadeh, C. Dixon, M. Mochizuki, Novel design of a miniature loop heat pipe evaporator for electronic cooling, Journal of Heat Transfer, 129 (2007) 1445.
[134] S. Launay, V. Sartre, J. Bonjour, Analytical model for characterization of loop heat pipes, Journal of Thermophysics and Heat Transfer, 22 (2008) 623-631.
[135] L. Troniewski, R. Ulbrich, Two-phase gas-liquid flow in rectangular channels, Chemical Engineering Science, 39 (1984) 751-765.
[136] D.R.H. Beattie, P.B. Whalley, A simple two-phase frictional pressure drop calculation method, International Journal of Multiphase Flow, 8 (1982) 83-87.
[137] D. Reay, R. McGlen, P. Kew, Heat pipes: Theory, design and applications, Butterworth-Heinemann, 2013.
[138] L.-l. Jiang, Y. Tang, W. Zhou, L.-z. Jiang, T. Xiao, Y. Li, J.-w. Gao, Design and fabrication of sintered wick for miniature cylindrical heat pipe, Transactions of Nonferrous Metals Society of China, 24 (2014) 292-301.
[139] ASTM E128-99 (2011), Standard test method for maximum pore diameter and permeability of rigid porous filters for laboratory use, ASTM International, West Conshohocken, 2011, https://doi.org/10.1520/E0128-99R11.
[140] ASTM F316-03((2011), Standard test methods for pore size characteristics of membrane filters by bubble point and mean flow pore test, ASTM International, West Conshohocken, 2011, https://doi.org/10.1520/F0316-03R11.
[141] Porous ceramics, (July 1, 2017), Retrieved from: http://taiyiaeh.com.tw/P_D02.html.
[142] Max continuous service temperature, (July 1, 2017), Retrieved from: http://omnexus.specialchem.com/polymer-properties/properties/max-continuous-service-temperature.
[143] D. Mishkinis, P. Prado, R. Sanz, A. Torres, A. Merino, T. Tjiptahardja, Development of LHP for intermediate temperature range, in: 15th International Heat Pipe Conference, Clemson, South Carolina (USA), 2010.
[144] J. Ku, J. Ku, Recent advances in capillary pumped loop technology, in: 1997 National Heat Transfer Conference, American Institute of Aeronautics and Astronautics, 1997.
[145] J. Suh, D. Cytrynowicz, P. Medis, F.M. Gerner, H.T. Henderson, Flow visualization within the evaporator of planar loop heat pipe, in: Space Technology and Applications Int. Forum-Staif 2005: Conf. Thermophys in Micrograv; Conf Comm/Civil Next Gen. Space Transp; 22nd Symp Space Nucl. Powr Propuls.; Conf. Human/Robotic Techn. Nat'l Vision Space Expl.; 3rd Symp Space Colon.; 2nd Symp. New Frontiers, Vol. 746, AIP Publishing, 2005, pp. 195-202.
[146] D.F. Gluck, C. Gerhart, Multifunctional capillary system for loop heat pipe statement of government interest, in, Google Patents, 2001.
[147] A.A. Adoni, A. Ambirajan, V.S. Jasvanath, D. Kumar, P. Dutta, Theoretical studies of hard filling in loop heat pipes, Journal of Thermophysics and Heat Transfer, 24 (2010) 173-183.
[148] T.M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, Journal of Heat Transfer, 128 (2006) 1050-1059.
[149] S. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat transfer and fluid flow in minichannels and microchannels, elsevier, 2005.
[150] D. Barnea, Y. Luninski, Y. Taitel, Flow pattern in horizontal and vertical two phase flow in small diameter pipes, The Canadian Journal of Chemical Engineering, 61 (1983) 617-620.
[151] V.P. Carey, Liquid-vapor phase-change phenomena, (1992).
[152] S.M. Ghiaasiaan, Two-phase flow, boiling, and condensation: in conventional and miniature systems, Cambridge University Press, 2007.
校內:2022-07-20公開