| 研究生: |
鍾旭恆 Chung, Hsu-Heng |
|---|---|
| 論文名稱: |
開孔尺寸與靜壓室高度對地板出風特性之關聯性分析 Analysis of the Relationship Between Opening Size and Plenum Height on UFAD Outlet Performance |
| 指導教授: |
潘振宇
Pan, Chen-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 地板出風 、出風口樣式 、靜壓室高度 、風速 、舒適度 |
| 外文關鍵詞: | underfloor air distribution , air outlet types, plenum height, air velocity, thermal comfort |
| 相關次數: | 點閱:13 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地板出風系統作為現代空調策略中的重要一環,其出風口設計直接左右整體空調系統的運行效率與使用者的舒適性。本研究針對現有商用與常見地板出風口類型,結合文獻分析、模擬空間實驗、辦公空間實測,全面探討開孔尺寸與靜壓室高度之不同配置,對於氣流行為與系統效能的影響。同時,本研究進行出風口型式的局部改良與功能調適,期望能為日後地板出風口提供具體且可行的標準化設計依據。
本研究採用1.8m × 1.8m之實驗模擬平台,此平台可調整靜壓室高度範圍自10cm~30cm,用以重現抬高樓板所形成之靜壓室內部配置,模擬不同靜壓條件下的氣流行為。透過更換各類型出風口面板,比較不同開孔形式與面積比例對風速場分布、噴流垂直噴流高度及煙霧擴散軌跡之影響,第二實地測試場域為長8.63m、寬6.8m之老舊開放式辦公空間,探討進風口位置與出風口分佈方式等,進一步分析其對室內氣流穩定性的控制能力。
實驗結果顯示,當出風口開孔面積範圍提升到188.4cm²~282.6cm²之間時,出風風量有顯著增幅,有助於提升室內氣流的穩定性與均勻性。另一方面,在靜壓室高度方面,本研究發現15cm高之靜壓空間提供了最佳的效能平衡,不僅可維持足夠的供風壓力,亦能有效抑制渦流與過強氣流導致的局部不適感,為空調系統提供穩定且高效的運行條件。
研究結果強調開孔尺寸與靜壓室高度對地板出風系統性能具有顯著影響,並證實透過合理的設計調整,可有效提升整體風量,並改善氣流分布均勻性,為未來大型辦公空間或對舒適性有較高要求之空間提供重要的設計參考依據。
This study explores how air outlet configuration, aperture size, and plenum height affect the performance and thermal comfort of underfloor air distribution (UFAD) systems. Recognizing the critical role of outlet design in airflow efficiency, the research combines literature review, experimental simulation, and field testing. A 1.8m × 1.8m test platform with adjustable plenum height (10–30 cm) was developed to simulate airflow conditions beneath raised floors. Various air outlet panels were tested to evaluate differences in air velocity fields, vertical jet height, and smoke diffusion patterns. Additionally, a real-world case study was conducted in an aged open-plan office (8.63m × 6.8m) to assess the impact of inlet positions and outlet layouts on indoor airflow stability.
Experimental results indicate that increasing the aperture area to 188.4–282.6 cm² significantly enhances airflow rate and improves uniformity. The analysis also shows that a 15 cm plenum height provides optimal performance—balancing sufficient static pressure while avoiding turbulence and discomfort caused by excessive localized airflow. These findings demonstrate that careful adjustment of outlet design and plenum dimensions can greatly improve overall system efficiency and indoor comfort. The research provides valuable guidance for the standardized design of UFAD systems, especially in large offices and high-comfort environments.
(1) 期刊論文
周伯丞、江哲銘(2004)。工作空間室內地板送風系統(UFAD)溫熱分佈特性及其適用性之研究 (I)(NSC92-2211-E-366-003)。樹德科技大學室內設計系。
Y.H. Yau, K.S. Poh, A. Badarudin (2018). A numerical airflow Pattern study of a floor swirl diffuser for UFADSystem. Energy and Buildings 158 (2018) 525–535
Liang Zhou,Fariborz Haghighat. (2007) SIMPLIFIED METHOD FOR MODELING SWIRL DIFFUSERS. NY, USA: University of Buffalo Press.
Zhou, L., & Haghighat, F. (2007). Simplified method for modeling swirl diffusers. Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings (IAQVEC 2007), Sendai, JaPan.
Yau, Y. H., Poh, K. S., & Badarudin, A. (2018). A numerical airflow Pattern study of a floor swirl diffuser for UFAD system. Energy and Buildings, 158, 525–535.
Xiong, X., & Lee, P. S. (2021). Vortex-enhanced thermal environment for air-cooled data center: An experimental and numerical study. Energy and Buildings, 250, 111287.
Bode, F. I., Dogeanu, A., Tacutu, L., Nastase, I., Danca, P. A., & Ene, A. (2022). Experimental study of an innovative perforated air diffuser at real scale conditions. Energy Reports, 8, 1234–1245.
Hviid, C. A., & Svendsen, S. (2013). Experimental study of perforated suspended ceilings as diffuse ventilation air inlets. Energy and Buildings, 56, 160–168.
Ahmad, S., Saxena, R., Yadav, A. S., Goga, G., & Mohan, R. (2023). A revisit to recent developments in the underfloor air distribution systems. E3S Web of Conferences, 430, 01256.
Lin, Y. J. P., & Linden, P. F. (2005). A model for an under floor air distribution system. Energy and Buildings, 37(4), 399–409.
Zhang, K., Zhang, X., Li, S., & Jin, X. (2014). Experimental study on the characteristics of supply air for UFAD system with perforated tiles. Energy and Buildings, 77, 292–299.
Karki, K. C., & Radmehr, A. (2003). Use of computational fluid dynamics for calculating flow rates through perforated tiles in raised-floor data centers. HVAC&R Research, 9(2), 153–166.
Zhang, J., Nagasaka, S., & E, J. (n.d.). Research on blowing out air flow characteristics of underfloor air-conditioning system. Part 1: Air-velocity measurement and CFD analysis of floor-supply displacement air-conditioning system. Shin Nippon Air Technologies Co., LTD.
A Fan, X., Yu, T., Liu, P., & Li, X. (2022). Uniformity of supply air in the plenum for under-floor air distribution ventilation in a circular conference room: A CFD study. Energies, 15(17), 6370.
Patankar, S. V., & Karki, K. C. (2004). Distribution of cooling airflow in a raised-floor data center. ASHRAE Transactions, 110(1), 755–763.
(2) 專書
文部科学省(編).(2005). 空気調和設備(工業093教科書). 東京:東京電機大学出版局
陆耀庆(主编).(2008年). 实用供热空调设计手册(上、下册). 北京:中国建筑工业出版社
陳聰明(2001)簡易空調負荷計算(SRH-HAR0301)。行政院勞工委員會職業訓練局
卢佳华(2020)《淺談地板送風系統設計施工與管理》。中國設備工程, (3), 34–35
Bauman, F. S. (1992). Underfloor air distribution (UFAD) design guide. Center for Environmental Design Research, University of California, Berkeley.
(3) 其他
王榮進、蔡綺芳、劉青峰(2023)日本建築智慧營造工法發展觀摩研習計畫報告 內政部建築研究所
American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2019). ANSI/ASHRAE Addendum d to ANSI/ASHRAE Standard 55-2017: Thermal environmental conditions for human occuPancy. ASHRAE.
American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2008). ANSI/ASHRAE Standard 111-2008: Measurement, testing, adjusting, and balancing of building HVAC systems. ASHRAE.
American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2006). ANSI/ASHRAE Standard 70-2006: Method of testing the performance of air outlets and air inlets. ASHRAE.
International Code Council. (2021). 2021 International Mechanical Code (IMC). International Code Council.
KUKEN. (2020). 床吹出口 SKFシリーズ [Floor air outlet SKF series]. KUKEN Corporation.
PRICE Industries. (n.d.). Underfloor air distribution systems. PRICE Industries. Retrieved [2024], from https://www.priceindustries.com/
Price Industries. (n.d.). Linear natural convection terminal (LNT). Retrieved May 11, 2025, from https://www.priceindustries.com/products/details/linear-natural-convection-terminal
ANSYS Inc. (n.d.). Calculating turbulent intensity [Training tutorial]. ANSYS Learning Hub. Retrieved [2024], from https://www.ansys.com/
CFD-Wiki contributors. (n.d.). Turbulence intensity. CFD-Wiki. Retrieved [2024], from https://www.cfd-online.com/Wiki/Turbulence_intensityInternational Code Council. (2021). 2021 International Mechanical Code (IMC). International Code Council.
Joto Co., Ltd. (n.d.). 換気や通気に関する法律・基準・決まり [Laws, standards, and rules related to ventilation and airflow]. Retrieved May 11, 2025, from https://reurl.cc/bWqgVl