簡易檢索 / 詳目顯示

研究生: 廖征暉
Liao, Cheng-Hui
論文名稱: 應用直覺式模糊環境決策方法建置海岸防護NbS治理之研究
A Study on Nature-based Solutions for Coastal protection using Intuitionistic Fuzzy Group Decision-Making Method
指導教授: 董東璟
Doong, Dong-Jiing
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 143
中文關鍵詞: 基於自然的解決方案自然解方NbS海岸保護海岸防護
外文關鍵詞: Nature-based Solutions, NbS, Coastal Protection, Coastal Defense
相關次數: 點閱:142下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於自然的解決方案(Nature-based Solutions, NbS)概念自2008年提出,近年來已廣泛被應用在水利、海岸與山林治理方面,NbS的核心精神是儘量恢復地球原有的自然生態系統,並依服務能力來應對各式社會挑戰,包含災害治理問題,NbS概念並非無工程措施,NbS是同時考量「水」、「環境」和「人」,讓利害關係者(Stakeholder)可以獲得多重效益,又稱共同利益(Co-benefit)的一個方法,本論文應用NbS研究的課題是海岸保護。
    由於NbS仍屬新創名詞,國際間對實施NbS迄今仍未有明確框架或流程,各式問題的影響層面不同,導致各研究提出的設計理念與評估方式雖然相似但並不相同,使得施作NbS難以直接引用。因此,本研究蒐集近年國際間對NbS的定義、原則和標準,嘗試提出一個可應用於海岸保護的NbS治理框架。
    本研究共蒐集了18種可應用於海岸保護的NbS解方,逐項闡述其內容,另外,本研究建立選擇NbS的優選方法,利用相關利益者和專家的知識和經驗,以直覺式模糊群體決策方式建置NbS治理評估模式,並確立評估指標的評估方式、權重分析和措施排序流程。透過此流程,決策者能選擇和實施合適的海岸NbS防護措施。最後,本研究以台南黃金海岸保護為例說明論證成果,分析結果證實了本研究所提框架的可行性和應用潛力,未來可擴展至其他海岸段的防護上。
    本研究提供了一個與以往國際間實施NbS不同的共識性評估指標和實施框架,有助於推動NbS的普及和實施,有望促進NbS在全球的普及和應用,以應對氣候變遷的挑戰。

    The concept of Nature-based Solutions (NbS) was introduced in 2008 to deal with Social challenges and climate change. It has been widely use in water, coastal, and forest management. Although NbS has been widely implemented, there's no a globally consensus framework, owing to distinct challenges and impacts encountered in each application. This study bridges this gap, proposing an NbS framework for coastal protection within stakeholder’s opinion.

    The research identifies 18 NbS measures for coastal protection, providing an understanding of each. It establishes an intuitive fuzzy group decision-making model for selecting the best NbS solution, employing the expertise of relevant stakeholders. This framework includes determining assessment methods, analyzing weight, and ranking protective measures. The resulting process enables decision-makers to choose and implement appropriate coastal NbS measures efficiently.

    The study is substantiated by a case study from the Gold Coast in Tainan, demonstrating the framework's feasibility and potential for wider application.

    This research contributes a unique consensus assessment indicator and implementation framework for NbS, differing from previous international efforts. By doing so, it not only encourages the popularization and application of NbS but also fosters its expansion in Taiwan, crucial in meeting climate change challenges.

    摘要 I ABSTRACT II 表目錄 XI 圖目錄 XII 第一章 前言 1 1-1 NbS定義 1 1-2 NbS重要性 5 1-3 研究目的 9 第二章 以自然為本的解決方案 10 2-1 NbS的國際發展進程 10 2-1-1 歐洲聯盟 11 2-1-2 國際自然保護聯盟 14 2-1-3 美國 16 2-1-4 台灣 18 2-1-5 學術期刊 19 2-2 NbS原則、準則與指標 21 2-2-1 歐盟 21 2-2-2 國際自然保護聯盟 25 2-3 NbS與氣候變遷 31 2-3-1 NbS與SDGs 31 2-3-2 NbS與社會生態 33 2-3-3 NbS與氣候調適 35 第三章 海岸防護措施 37 3-1紅樹林(Mangrove) 40 3-2鹽沼(Salt marsh) 42 3-3海草(Sea grass) 44 3-4沙丘(Dune) 46 3-5珊瑚礁(Coral reef) 47 3-6牡蠣礁(Oyster reef) 48 3-7養灘(Sand nourishment) 49 3-8緩衝帶(Buffer zone) 50 3-9親水離岸堤(Living breakwater) 51 3-10人工魚礁(Artificial reef) 52 3-11親水突堤(Ecological groins) 54 3-12重力排水(Gravity drainage) 54 3-13人工沙腸(Geotextile tube) 55 3-14人工岬灣(Artificial headland) 56 3-15編籬定沙(Sand fence) 57 3-16人工浮島(Artificial floating island) 58 3-17自然消波工(Natural wave breaker) 59 3-18半自然消波工(Eco-friendly wave breaker) 59 3-19海岸防護NbS措施評估 60 第四章 海岸防護NBS 64 4-1 NbS國際框架 64 4-2 NbS框架所遇到之困難 68 4-3 NbS實施框架 69 4-4 NbS優選方法 71 4-4-1多準則決策 74 4-4-2直覺式模糊集合理論 75 4-4-3模糊德爾菲法 76 4-4-4直覺式模糊環境下之理想解相似度順序偏好法(TOPSIS) 81 4-5研究成果 87 4-5-1模糊德爾菲法調查結果分析 88 4-5-2直覺式模糊環境TOPSIS調查結果分析 93 4-5-3結果討論 100 4-5-4應對台南海岸侵蝕之排序結果 101 第五章 結論 109 5-1結論 109 5-2建議 110 參考文獻 111 附錄 124

    [1] 刁培正(2014),「多準則非凌越解評選方法之探討」東吳大學企業管理學系碩士論文。
    [2] 王小璠. (2005). 多準則決策分析, 滄海書局, 台中.
    [3] 施友元(2011),「國際氣候變遷調適策略經濟評估方法之趨勢與啟示」,經濟研究年刊,291-319。
    [4] 陳怡帆(2014) 「在直覺式模糊環境下之群體決策模式:TOPSIS 之探討」,國立成功大學工業與資訊管理學系碩士班碩士論文。
    [5] 陳膺吉(2018),「應用於直覺式模糊環境下之群體TOPSIS決策模式」,國立成功大學工業與資訊管理學系碩士班碩士論文。
    [6] 游景雲, 王元亨, & 楊智傑. (2017). 水利工程規劃決策評價概念探討成本效益分析, 風險分析架構及風險控管. 土木水利, 44(5), 17-34。
    [7] 經濟部水利署(2020),臺南市一級海岸防護計畫。
    [8] 經濟部水利署水利規劃試驗所(2019),「連結歐盟 NBS 計畫及共同開 發評估模式(108-110)(1/3)」。
    [9] 鄭滄濱. (2001). 軟體組織提升人員能力之成熟度模糊評估模式. 台北: 國立台灣科技大學資訊管理研究所碩士論文.
    [10] (N.d.). Retrieved from (N.d.). Ipcc AR4 Climate Change 2007: Mitigation of Climate Change
    [11] Adopted, I. P. C. C. (2014). Climate change 2014 synthesis report. IPCC: Geneva, Szwitzerland, 1059-1072.
    [12] AK-BHD, M. (2021). WMO Greenhouse Gas Bulletin. World Meteorological Organization: Geneva, Switzerland.
    [13] Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets (pp. 1-137). Physica-Verlag HD.
    [14] Balian, E., Eggermont, H. & Le Roux, X. (2014). Outcomes of the strategic foresight workshop. BiodivERsA Strategic Foresight workshop, Nature-based solutions in a BiodivERsA context.
    [15] Bao, T. Q. (2011). Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia, 53(3), 807-818.
    [16] Baptist, M. J., Gerkema, T., Van Prooijen, B. C., Van Maren, D. S., Van Regteren, M., Schulz, K., ... & van Puijenbroek, M. E. B. (2019). Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’. Ecological Engineering, 127, 312-323.
    [17] Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs, 81(2), 169-193.
    [18] Bauduceau, N., Berry, P., Cecchi, C., Elmqvist, T., Fernandez, M., Hartig, T., ... & Tack, J. (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities: Final report of the horizon 2020 expert group on'nature-based solutions and re-naturing cities'.
    [19] Beck, M. W., Lange, G. M., & Accounting, W. (2016). Managing coasts with natural solutions: Guidelines for measuring and valuing the coastal protection services of mangroves and coral reefs (No. 103340, pp. 1-167). The World Bank.
    [20] Bouma, T. J., Van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A. J., ... & Herman, P. M. (2014). Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coastal Engineering, 87, 147-157.
    [21] Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.
    [22] Brink, E., Aalders, T., Ádám, D., Feller, R., Henselek, Y., Hoffmann, A., ... & Wamsler, C. (2016). Cascades of green: A review of ecosystem-based adaptation in urban areas. Global environmental change, 36, 111-123.
    [23] Carss, D. N., Brito, A. C., Chainho, P., Ciutat, A., de Montaudouin, X., Otero, R. M. F., ... & Jones, L. (2020). Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Marine Environmental Research, 158, 104931.
    [24] Chen, L. H., & Tu, C. C. (2013). Dual bipolar measures of Atanassov's intuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, 22(4), 966-982.
    [25] Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97, 2016-2036.
    [26] Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Van Den Belt, M. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253-260.
    [27] Croeser, T., Garrard, G., Sharma, R., Ossola, A., & Bekessy, S. (2021). Choosing the right nature-based solutions to meet diverse urban challenges. Urban Forestry & Urban Greening, 65, 127337.
    [28] Dalrymple, R. A., Kirby, J. T., & Hwang, P. A. (1984). Wave diffraction due to areas of energy dissipation. Journal of waterway, port, coastal, and ocean engineering, 110(1), 67-79.
    [29] Darin-Mattsson, A., Fors, S., & Kåreholt, I. (2017). Different indicators of socioeconomic status and their relative importance as determinants of health in old age. International journal for equity in health, 16(1), 1-11.
    [30] Dass, P., Houlton, B. Z., Wang, Y., & Warlind, D. (2018). Grasslands may be more reliable carbon sinks than forests in California. Environmental Research Letters, 13(7), 074027.
    [31] De Brito, M. M., & Evers, M. (2015). Multi-criteria decision making for flood risk management: A survey of the current state-of-the-art. Natural Hazards and Earth System Sciences Discussions, 3(11), 6689-6726.
    [32] Didderen, K., Lengkeek, W., Kamermans, P., Deden, B., Reuchlin-Hugenholtz, E., Bergsma, J. H., ... & Sas, H. (2019). Pilot to actively restore native oyster reefs in the North Sea: comprehensive report to share lessons learned in 2018 (No. 19-013). Bureau Waardenburg.
    [33] Donker, J. J. A., Van der Vegt, M., & Hoekstra, P. (2013). Wave forcing over an intertidal mussel bed. Journal of Sea Research, 82, 54-66.
    [34] Doody, J. P. (2012). Sand dune conservation, management and restoration (Vol. 4). Springer Science & Business Media.
    [35] Dumitru, A., & Wendling, L. (2021). Evaluating the impact of nature-based solutions: A handbook for practitioners. European Commission EC.
    [36] EcoShape (2021) Oyster reefs and the pacific oyster. https://www.ecosh ape.org/en/oyster-reefs-and-the-pacific-oyster/ Ellenberg H, Dierschke H (2010) Vegetation mitteleur.
    [37] Eisenberg, B., & Polcher, V. (2019). Nature Based Solutions–Technical Handbook. Personal Communication.
    [38] Everard, M., Jones, L., & Watts, B. (2010). Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquatic Conservation: Marine and Freshwater Ecosystems, 20(4), 476-487.
    [39] FEMA. (2021). BUILDING COMMUNITY RESILIENCE WITH NATURE-BASED SOLUTIONS: A GUIDE FOR LOCAL COMMUNITIES
    [40] Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C., Hauck, J., ... & Zeng, J. (2022). Global carbon budget 2021. Earth System Science Data, 14(4), 1917-2005.
    [41] Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B., & Silliman, B. R. (2011). The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic change, 106, 7-29.
    [42] Giro, A. (2021). Regional Strategy and Action Plan for the Valuation, Protection and/or Restoration of Key Marine Habitats in the Wider Caribbean 2021–2030 United Nations Environment Programme-Caribbean Environment Programme (UNEP-CEP) Caribbean Natural Resources Institute (CANARI). Technical Report No. https://www. unenvironment. org/cep.
    [43] Gutiérrez, J. L., Jones, C. G., Byers, J. E., Arkema, K. K., Berkenbusch, K., Commito, J. A., ... & Wild, C. (2011). 7.04—Physical ecosystem engineers and the functioning of estuaries and coasts. Treatise on estuarine and coastal science, 53-81.
    [44] Hanley, M. E., Hoggart, S. P. G., Simmonds, D. J., Bichot, A., Colangelo, M. A., Bozzeda, F., ... & Thompson, R. C. (2014). Shifting sands? Coastal protection by sand banks, beaches and dunes. Coastal Engineering, 87, 136-146.
    [45] Hennessy, K., Lawrence, J., & Mackey, B. (2022). IPCC sixth assessment report (AR6): climate change 2022-impacts, adaptation and vulnerability: regional factsheet Australasia.
    [46] Hesp, P. A., & Walker, I. J. (2013). Coastal dunes. In Aeolian Geomorphology (pp. 328-355). Elsevier Inc..
    [47] Huang, L., Shao, Q., & Liu, J. (2012). Forest restoration to achieve both ecological and economic progress, Poyang Lake basin, China. Ecological engineering, 44, 53-60.
    [48] Hwang, C. L., Yoon, K., Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191.
    [49] IFRC & WWF. (2022). WORKING WITH NATURE TO PROTECT PEOPLE HOW NATURE-BASED SOLUTIONS REDUCE CLIMATE CHANGE AND WEATHER-RELATED DISASTERS
    [50] IUCN. (2020). Global standard for nature-based solutions. A user-friendly framework for the verification, design and scaling up of NbS. Accessed, 15(December), 2022.
    [51] Jayasooriya, V. M., & Ng, A. W. M. (2014). Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water, Air, & Soil Pollution, 225, 1-20.
    [52] Jiao, J., Zhang, Z., Bai, W., Jia, Y., & Wang, N. (2012). Assessing the ecological success of restoration by afforestation on the Chinese Loess Plateau. Restoration Ecology, 20(2), 240-249.
    [53] Jordan, P., & Fröhle, P. (2022). Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature-based solutions for coastal protection. Journal of Coastal Conservation, 26(2), 4.
    [54] Katoh, K., & Yanagishima, S. I. (1996). Field experiment on the effect of gravity drainage system on beach stabilization. In Coastal Engineering 1996 (pp. 2654-2665).
    [55] Keeble, J. J., Topiol, S., & Berkeley, S. (2003). Using indicators to measure sustainability performance at a corporate and project level. Journal of business ethics, 44, 149-158.
    [56] Klein, A. H., da Silva, G. V., Taborda, R., da Silva, A. P., & Short, A. D. (2020). Headland bypassing and overpassing: form, processes and applications. Sandy Beach Morphodynamics, 557-591.
    [57] Kollmann, J., Kirmer, A., Tischew, S., Hölzel, N., Kiehl, K., & Kiehl, K. (2019). Was ist Renaturierungsökologie? (pp. 13-22). Springer Berlin Heidelberg.
    [58] Kolokotsa, D., Lilli, A. Α., Lilli, M. A., & Nikolaidis, N. P. (2020). On the impact of nature-based solutions on citizens’ health & well being. Energy and buildings, 229, 110527.
    [59] Krauss, K. W., McKee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. New Phytologist, 202(1), 19-34.
    [60] Kuller, M., Bach, P. M., Roberts, S., Browne, D., & Deletic, A. (2019). A planning-support tool for spatial suitability assessment of green urban stormwater infrastructure. Science of the total environment, 686, 856-868.
    [61] Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., ... & Zieher, T. (2021). An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Science Reviews, 217, 103603.
    [62] Lerer, S. M., Arnbjerg-Nielsen, K., & Mikkelsen, P. S. (2015). A mapping of tools for informing water sensitive urban design planning decisions—questions, aspects and context sensitivity. Water, 7(3), 993-1012.
    [63] MacKinnon, K., Sobrevila, C., & Hickey, V. (2008). Biodiversity, climate change, and adaptation: nature-based solutions from the World Bank portfolio (No. 46726, pp. 1-112). The World Bank.
    [64] Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., ... & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59-66.
    [65] Marvuglia, A., Koppelaar, R., & Rugani, B. (2020). The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities. Ecological Modelling, 438, 109351.
    [66] McQuaid, S., Kooijman, E. D., Rhodes, M. L., & Cannon, S. M. (2021). Innovating with nature: factors influencing the success of nature-based enterprises. Sustainability, 13(22), 12488.
    [67] Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., Van Wesenbeeck, B. K., ... & Schimmels, S. (2014). Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience, 7(10), 727-731.
    [68] Moosavi, S. (2017). Ecological coastal protection: pathways to living shorelines. Procedia Engineering, 196, 930-938.
    [69] Mullen, P. M. (2003). Delphi: myths and reality. Journal of health organization and management, 17(1), 37-52.
    [70] Mureithi, S. M., Verdoodt, A., Njoka, J. T., Gachene, C. K., & Van Ranst, E. (2016). Benefits derived from rehabilitating a degraded semi‐arid rangeland in communal enclosures, Kenya. Land Degradation & Development, 27(8), 1853-1862.
    [71] Murray, T. J., Pipino, L. L., & Van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80.
    [72] Nambiar, K. K. M., Gupta, A. P., Fu, Q., & Li, S. (2001). Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agriculture, ecosystems & environment, 87(2), 209-214.
    [73] Narayan, S., Beck, M. W., Reguero, B. G., Losada, I. J., Van Wesenbeeck, B., Pontee, N., ... & Burks-Copes, K. A. (2016). The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PloS one, 11(5), e0154735.
    [74] Nguyen, H. H., McAlpine, C., Pullar, D., Leisz, S. J., & Galina, G. (2015). Drivers of coastal shoreline change: case study of Hon Dat coast, Kien Giang, Vietnam. Environmental management, 55, 1093-1108.
    [75] Niemeyer, H. D., Eiben, H., & Rohde, H. (1996). History and heritage of German coastal engineering. In History and heritage of coastal engineering (pp. 169-213).
    [76] Nugroho Sugianto, D., Widada, S., Wirastriya, A., Ismanto, A., Hartati, R., Widianingsih, W., ... & Suripin, S. (2020). A Framework for Plans Permeable Breakwater Eco-Friendly Building Identification and Characteristics Materials Construction Study Case at Demak Village.
    [77] Olhoff, A., & Christensen, J. M. (2020). Emissions gap report 2020.
    [78] Opperman, J. J., & Galloway, G. E. (2022). Nature-based solutions for managing rising flood risk and delivering multiple benefits. One Earth, 5(5), 461-465.
    [79] Pulgar-Vidal, M., Morales, V., Muller, M. R., Edwards, G. (2021). NATURE-BASED SOLUTIONS IN THE CONVENTION ON BIOLOGICAL DIVERSITY (CBD)
    [80] Quandt, A., Neufeldt, H., & McCabe, J. T. (2017). The role of agroforestry in building livelihood resilience to floods and drought in semiarid Kenya. Ecology and Society, 22(3).
    [81] Raudkivi, A. J. (1996). Permeable pile groins. Journal of waterway, port, coastal, and ocean engineering, 122(6), 267-272.
    [82] Raymond, C., Breil, M., Nita, M., Kabisch, N., de Bel, M., Enzi, V., ... & Berry, P. (2017). An impact evaluation framework to support planning and evaluation of nature-based solutions projects. Report prepared by the EKLIPSE Expert Working Group on Nature-Based Solutions to Promote Climate Resilience in Urban Areas. Centre for Ecology and Hydrology.
    [83] Reid, W. V., & Raudsepp-Hearne, C. (2005). Millennium ecosystem assessment.
    [84] Reise, K. (2018). Weiche Kante-ein konzeptioneller Beitrag zu einem naturfreundlichen Küstenschutz in der Wattenmeer-Region.
    [85] Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L. S., Capobianco, V., Oen, A. M., ... & Lopez-Gunn, E. (2020). Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area. Natural Hazards and Earth System Sciences, 20(1), 243-270.
    [86] Ruangpan, L., Vojinovic, Z., Plavšić, J., Doong, D. J., Bahlmann, T., Alves, A., ... & Franca, M. J. (2021). Incorporating stakeholders’ preferences into a multi-criteria framework for planning large-scale Nature-Based Solutions. Ambio, 50, 1514-1531.
    [87] Seddon, N., Chausson, A., Berry, P., Girardin, C. A., Smith, A., & Turner, B. (2020). Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B, 375(1794), 20190120.
    [88] Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., ... & Turner, B. (2021). Getting the message right on nature‐based solutions to climate change. Global change biology, 27(8), 1518-1546.
    [89] Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., ... & Malley, J. (2019). IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
    [90] Sowińska-Świerkosz, B., & García, J. (2022). What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions, 2, 100009.
    [91] Steele, K., Carmel, Y., Cross, J., & Wilcox, C. (2009). Uses and misuses of multicriteria decision analysis (MCDA) in environmental decision making. Risk Analysis: An International Journal, 29(1), 26-33.
    [92] Stern, N. (2006). Stern Review: The economics of climate change.
    [93] Strantzali, E., Aravossis, K., & Livanos, G. A. (2017). Evaluation of future sustainable electricity generation alternatives: The case of a Greek island. Renewable and sustainable energy reviews, 76, 775-787.
    [94] Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy sets and systems, 118(3), 467-477.
    [95] UNEP (2022) Nature-based Solutions: Opportunities and Challenges for Scaling Up | UNEP - UN Environment Programme.
    [96] UNEP/EA.5/Res.5 (2022). Nature-based Solutions for supporting sustainable development.
    [97] UNEP-WCMC, S. F. (2020). Global distribution of seagrasses (version 7.0): Seventh update to the data layer used in green and short (2003).
    [98] Unguendoli, S., Biolchi, L. G., Aguzzi, M., Pillai, U. P. A., Alessandri, J., & Valentini, A. (2023). A modeling application of integrated nature based solutions (NBS) for coastal erosion and flooding mitigation in the Emilia-Romagna coastline (Northeast Italy). Science of The Total Environment, 867, 161357.
    [99] Van der Nat, A., Vellinga, P., Leemans, R., & Van Slobbe, E. (2016). Ranking coastal flood protection designs from engineered to nature-based. Ecological Engineering, 87, 80-90.
    [100] Verhagen, H. J. (2019). Financial benefits of mangroves for surge prone high-value areas. Water, 11(11), 2374.
    [101] Wallemacq P., and House R. (2018). Economic Losses, Poverty & Disasters: 1998–2017, CRED & UNISDR, Brussels, Belgium.
    [102] Water, U. N. (2018). 2018 UN World Water Development Report, Nature-based Solutions for Water.
    [103] Wood, S. L., Jones, S. K., Johnson, J. A., Brauman, K. A., Chaplin-Kramer, R., Fremier, A., ... & DeClerck, F. A. (2018). Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem services, 29, 70- 82.
    [104] Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove sedimentation and response to relative sea-level rise. Annual review of marine science, 8, 243-266.
    [105] World Economic Forum Official Site (2022). "Global Risks Report 2022."
    [106] World Economic Forum Official Site (2023a). "Global Risks Report 2023."
    [107] Xu, Z. (2007). Intuitionistic fuzzy aggregation operators. IEEE Transactions on fuzzy systems, 15(6), 1179-1187.
    [108] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
    [109] Zerbe, S., & Wiegleb, G. (Eds.). (2009). Renaturierung von Ökosystemen in Mitteleuropa (Vol. 6). Heidelberg: Spektrum Akademischer Verlag.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE