簡易檢索 / 詳目顯示

研究生: 孫胤
Sun, Yin
論文名稱: 利用混合密度泛函理論研究:AgzCu1-zIn1-xGax(Se1-ySy)2六元化合物與CdS介面之能帶偏移
Band offsets at the interfaces between AgzCu1-zIn1-xGax(Se1-ySy)2 senary compounds and CdS : A hybrid density functional theory study
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 74
中文關鍵詞: 第一原理計算銀銅銦鎵硒硫太陽能電池能隙能隙偏移
外文關鍵詞: First-principles calculations, Ag-Cu-In-Ga-Se-S solar cells, Bandgaps, Band offsets
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅銦鎵硒(CIGS)太陽能電池近年來廣受全球注目。是一種高轉換效率的薄膜太陽能電池,其實驗室轉換效率高達23.35%,在性能上遠超矽晶太陽能電池。諾貝爾物理獎得主H. Kroemer在1957年的論文中首次提出了異質結能帶偏移理論,他的名言“介面即是器件”道出了界面效應在許多半導體器件中的核心地位。 本研究以第一性原理模擬計算為基礎,利用VASP軟體和Material Studio計算材料的性質,建立了銀銅銦鎵硒硫(Ag-Cu-In-Ga-Se-S)六元化合物的能隙關係模型。並且進一步探討了該材料與硫化鎘(CdS)緩衝層之間的能隙偏移,分析不同成分對異質結能帶偏移的影響。這些研究結果將有助於提高CIGS太陽能電池的轉換效率,並為設計更高效的光伏器件提供理論基礎。

    Copper indium gallium selenide solar cells have gained significant global attention in recent years. They are a type of thin-film solar cell with high conversion efficiency, achieving a laboratory efficiency of up to 23.35%, significantly outperforming silicon solar cells. Nobel Prize-winning physicist H. Kroemer first proposed the theory of heterojunction band offset in his 1957 paper, encapsulating the critical role of interface effects in many semiconductor devices with his famous saying, "The interface is the device." This study is based on first-principles simulation calculations, utilizing VASP software and Material Studio to calculate material properties. We established a bandgap relationship model for the six-element compound Ag-Cu-In-Ga-Se-S. Furthermore, we investigated the bandgap offset between this material and the cadmium sulfide (CdS) buffer layer, analyzing the effects of different compositions on the heterojunction band offset. These research findings will help improve the conversion efficiency of CIGS solar cells and provide a theoretical foundation for designing more efficient photovoltaic devices.

    摘要 i 致謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 1 第一章 緒論 1 1.1 銅銦鎵硒電池簡介與發展 1 1.2 半導體能帶偏移 3 第二章 文獻回顧 4 2.1 CIGS薄膜材料基本原理 4 2.1.1 CIGS晶體結構與 4 2.1.2 CIGS薄膜材料中缺陷對開路電壓 (VOC) 的影響 5 2.1.3 CIGS 薄膜電池工作原理 5 2.2 ACIGSSe太陽能電池之電子性質 6 2.2.1 ACIGSSe之能隙 6 2.2.2 ACIGSSe和CdS之能隙偏移 7 第三章 計算方法 8 3.1 第一原理計算 8 3.1.1 密度泛函理論 8 3.1.2 交換關聯能 10 3.1.3 自洽計算 11 3.1.4 波函數的展開式 12 3.1.5 贋勢能 13 3.1.6 週期性邊界條件(Periodic boundary conditions) 13 第四章 物理模型與模擬設計 15 4.1 模型建立 15 4.1.1 塊體模型建立 15 4.1.2 介面模型建立 17 4.2 結構優化 19 4.3 材料之能隙 20 4.4 材料之能隙偏移 20 4.5 電子態密度(Density of state, DOS) 24 4.6 載子濃度 25 第五章 結果與討論 26 5.1 AgzCu1-zIn1-xGax2Se2(ACIGSe) 28 5.1.1 ACIGSe能隙分析 28 5.1.2 ACIGSe能帶偏移分析 29 5.2 AgzCu1-zIn1-xGaxS2 33 5.2.1 ACIGS能隙分析 34 5.2.2 ACIGS能帶偏移分析 35 5.3 AgzCu1-zIn0.75Ga0.25(Se1-ySy)2 38 5.3.1 ACI0.75G0.25SSe 能隙變化 39 5.3.2 ACI0.75G0.25SSe能隙偏移分析 40 5.4 載流子濃度 43 5.5 三組模型綜合討論 44 第六章 結論 50 第七章 參考文獻 51

    1. Elbar, M. and S. Tobbeche, Numerical Simulation of CGS/CIGS Single and Tandem Thin-film Solar Cells using the Silvaco-Atlas Software. Energy Procedia, 2015. 74: p. 1220-1227.
    2. Mickelsen, R.A. and W.S. Chen, High photocurrent polycrystalline thin-film CdS/CuInSe<SUB>2</SUB> solar cell<SUP>a</SUP>. Applied Physics Letters, 1980. 36: p. 371.
    3. Mitchell, K., et al. Single and tandem junction CuInSe/sub 2/ cell and module technology. in Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. 1988.
    4. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications, 2015. 23(1): p. 1-9.
    5. Tarrant, D. and J. Ermer. I-III-VI/sub 2/ multinary solar cells based on CuInSe/sub 2. in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9). 1993.
    6. Gabor, A.M., et al., High‐efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films. Applied Physics Letters, 1994. 65(2): p. 198-200.
    7. Jackson, P., et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): p. 894-897.
    8. Jackson, P., et al., Cover Picture: Properties of Cu(In,Ga)Se 2 solar cells with new record efficiencies up to 21.7% (Phys. Status Solidi RRL 1/2015). physica status solidi (RRL) - Rapid Research Letters, 2015. 9.
    9. Kim, K., et al., Highly efficient Ag-alloyed Cu(In,Ga)Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy, 2018. 48: p. 345-352.
    10. Anderson, R.L., Experiments on Ge-GaAs heterojunctions. Solid-State Electronics, 1962. 5(5): p. 341-351.
    11. Nadenau, V., et al., Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis. Journal of Applied Physics, 2000. 87(1): p. 584-593.
    12. Jasenek, A., et al., Electronic properties of CuGaSe2-based heterojunction solar cells. Part II. Defect spectroscopy. Journal of Applied Physics, 2000. 87(1): p. 594-602.
    13. Pohl, J. and K. Albe, Intrinsic point defects in CuInSe${}_{2}$ and CuGaSe${}_{2}$ as seen via screened-exchange hybrid density functional theory. Physical Review B, 2013. 87(24): p. 245203.
    14. Spindler, C., et al., Electronic defects in $mathrm{Cu}(mathrm{In},mathrm{Ga})mathrm{S}{mathrm{e}}_{2}$: Towards a comprehensive model. Physical Review Materials, 2019. 3(9): p. 090302.
    15. Spindler, C., D. Regesch, and S. Siebentritt, Revisiting radiative deep-level transitions in CuGaSe2 by photoluminescence. Applied Physics Letters, 2016. 109(3).
    16. Hanna, G., et al., Open Circuit Voltage Limitations in CuIn1–xGaxSe2 Thin-Film Solar Cells – Dependence on Alloy Composition. physica status solidi (a), 2000. 179(1): p. R7-R8.
    17. Hanna, G., et al., Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. Thin Solid Films, 2001. 387(1): p. 71-73.
    18. Raghuwanshi, M., et al., Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se2 solar cells. Applied Physics Letters, 2014. 105(1).
    19. Wei, S.-H., S. Zhang, and A. Zunger, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters, 1998. 72: p. 3199-3201.
    20. Huang, C.H. and H.L. Cheng. Effects of sulfur incorporation into absorbers of CIGS solar cells studied by numerical analysis. in 2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). 2012.
    21. Chang, S.-H., et al., Facile colloidal synthesis of quinary CuIn1−xGax(SySe1−y)2 (CIGSSe) nanocrystal inks with tunable band gaps for use in low-cost photovoltaics. Energy & Environmental Science, 2011. 4(12).
    22. Keller, J., et al., Wide-gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials—A path to a better heterojunction. Progress in Photovoltaics: Research and Applications, 2020. 28(4): p. 237-250.
    23. Rubin, H.L., P. José, and C.B. Cristian, A Survey of Computational Physics: Introductory Computational Science. 2008: Princeton University Press. 1.
    24. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
    25. Wang, V., et al., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 2021. 267: p. 108033.
    26. Thomas, L.H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 1927. 23(5): p. 542-548.
    27. Slater, J.C., A Simplification of the Hartree-Fock Method. Physical Review, 1951. 81(3): p. 385-390.
    28. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
    29. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
    30. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B, 1986. 33(12): p. 8800-8802.
    31. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.
    32. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
    33. Kresse, G. and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 1994. 6(40): p. 8245.
    34. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
    35. Hamann, D.R., M. Schlüter, and C. Chiang, Norm-Conserving Pseudopotentials. Physical Review Letters, 1979. 43(20): p. 1494-1497.
    36. Schlenker, T., et al., Substrate influence on Cu(In,Ga)Se2 film texture. Thin Solid Films, 2005. 480-481: p. 29-32.
    37. Siebentritt, S., et al., Stability of surfaces in the chalcopyrite system. Applied Physics Letters, 2006. 88(15).
    38. Jaffe, J.E. and A. Zunger, Defect-induced nonpolar-to-polar transition at the surface of chalcopyrite semiconductors. Physical Review B, 2001. 64(24): p. 241304.
    39. Xiao, H. and W.A. Goddard, III, Predicted roles of defects on band offsets and energetics at CIGS (Cu(In,Ga)Se2/CdS) solar cell interfaces and implications for improving performance. The Journal of Chemical Physics, 2014. 141(9).
    40. Heyd, J. and G.E. Scuseria, Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 2004. 121(3): p. 1187-1192.
    41. Krukau, A.V., et al., Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of Chemical Physics, 2006. 125(22).
    42. Franciosi, A. and C.G. Van de Walle, Heterojunction band offset engineering. Surface Science Reports, 1996. 25(1): p. 1-140.
    43. Yakushev, M.V., et al., Excited states of the free excitons in CuInSe2 single crystals. Applied Physics Letters, 2010. 97(15).
    44. Adachi, S., The Handbook on Optical Constants of Semiconductors: In Tables and Figures. 2012. 1-619.
    45. Jaffe, J.E. and A. Zunger, Electronic structure of the ternary chalcopyrite semiconductors CuAl${mathrm{S}}_{2}$, CuGa${mathrm{S}}_{2}$, CuIn${mathrm{S}}_{2}$, CuAl${mathrm{Se}}_{2}$, CuGa${mathrm{Se}}_{2}$, and CuIn${mathrm{Se}}_{2}$. Physical Review B, 1983. 28(10): p. 5822-5847.
    46. Shay, J.L., et al., Energy bands of AgIn${mathrm{S}}_{2}$ in the chalcopyrite and orthorhombic structures. Physical Review B, 1974. 9(4): p. 1719-1723.
    47. Benoit, P., et al., Crystal Structure of Chalcopyrite AgInSe2. Japanese Journal of Applied Physics, 1980. 19(S3): p. 85.
    48. Abrahams, S.C. and J.L. Bernstein, Piezoelectric nonlinear optic CuGaS2 and CuInS2 crystal structure: Sublattice distortion in AIBIIIC2VI and AIIBIVC2V type chalcopyrites. The Journal of Chemical Physics, 1973. 59(10): p. 5415-5422.
    49. Pamplin, B.R., T. Kiyosawa, and K. Masumoto, Ternary chalcopyrite compounds. Progress in Crystal Growth and Characterization, 1979. 1(4): p. 331-387.
    50. Valdes, N.H., J. Lee, and W.N. Shafarman, Ag Alloying and KF Treatment Effects on Low Bandgap CuInSe2 Solar Cells. IEEE Journal of Photovoltaics, 2018. 9: p. 906-911.
    51. Hanket, G.M., et al., Wide-bandgap (AgCu)(InGa)Se2 absorber layers deposited by three-stage co-evaporation. 2010 35th IEEE Photovoltaic Specialists Conference, 2010: p. 003425-003429.
    52. Hanket, G., J. Boyle, and W. Shafarman, Characterization and Device Performance of (AgCu)(InGa)Se2 Absorber Layers. 2009. 001240-001245.
    53. Bekaert, J., et al., Native point defects in CuIn1-xGaxSe2: Hybrid density functional calculations predict the origin of p- and n-type conductivity. Physical Chemistry Chemical Physics, 2014.
    54. Septina, W., et al., Photosplitting of Water from Wide-Gap Cu(In,Ga)S 2 Thin Films Modified with a CdS Layer and Pt Nanoparticles for a High-Onset-Potential Photocathode. The Journal of Physical Chemistry C, 2015. 119.
    55. Chen, S., et al., Structural, Electronic and Defect Properties of Cu2ZnSn(S,Se)4 Alloys. MRS Proceedings, 2011. 1370.
    56. Houcine, A., A. Helmaoui, and H. Moughli, Numerical Modeling of Graded Band-Gap CIGS Solar Celle for High Efficiency. 2017: p. 227-232.
    57. Saadat, M., M. Moradi, and M. Zahedifar, CIGS absorber layer with double grading Ga profile for highly efficient solar cells. Superlattices and Microstructures, 2016. 92: p. 303-307.
    58. Jackson, P., et al., Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) – Rapid Research Letters, 2015. 9(1): p. 28-31.
    59. Peace, B., et al., Characterization of Cu(In,Ga)Se2 (CIGS) films with varying gallium ratios. Journal of Alloys and Compounds, 2016. 657: p. 873-877.
    60. Lim, D., M.-Y. Kim, and W. Song, Effects of Ga Contents on Structural and Electrical Properties in Cu(In,Ga)Se2 Thin Film Solar Cell. Science of Advanced Materials, 2016. 8: p. 558-562.
    61. Ramanujam, J. and U. Singh, Copper indium gallium selenide based solar cells – Review. Energy & Environmental Science, 2017. 9.
    62. Huang, P., et al., Effect of selenization and sulfurization on the structure and performance of CIGS solar cell. Journal of Materials Science: Materials in Electronics, 2018. 29.
    63. Chen, X.-D., et al., Hybrid density functional theory study of Cu(In1−xGax)Se2 band structure for solar cell application. AIP Advances, 2014. 4: p. 087118.
    64. Maeda, T., et al., Control of electronic structure in Cu(In, Ga)(S, Se)<SUB>2</SUB> for high-efficiency solar cells. Japanese Journal of Applied Physics, 2020. 59: p. SGGF12.
    65. Castellanos Águila, J.E., et al., Electronic band alignment at CuGaS2 chalcopyrite interfaces. Computational Materials Science, 2016. 121: p. 79-85.
    66. Hashimoto, Y., K. Takeuchi, and K. Ito, Band alignment at CdS/CuInS2 heterojunction. Applied Physics Letters, 1995. 67(7): p. 980-982.
    67. Conesa, J.C., Computing with DFT Band Offsets at Semiconductor Interfaces: A Comparison of Two Methods. Nanomaterials, 2021. 11(6): p. 1581.
    68. Gaillard, N., et al., Correction: Performance and limits of 2.0 eV bandgap CuInGaS2 solar absorber integrated with CdS buffer on F:SnO2 substrate for multijunction photovoltaic and photoelectrochemical water splitting devices. Materials Advances, 2021. 2(18): p. 6112.
    69. Schulmeyer, T., et al., Influence of Cu(In,Ga)Se2 band gap on the valence band offset with CdS. Thin Solid Films, 2004. 451-452: p. 420-423.
    70. Keller, J., et al., Wide‐gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials—A path to a better heterojunction. Progress in Photovoltaics: Research and Applications, 2020. 28(4): p. 237-250.
    71. Kipkorir, A. and P.V. Kamat, Managing photoinduced electron transfer in AgInS2–CdS heterostructures. The Journal of Chemical Physics, 2022. 156(17).
    72. Purohit, M., et al., Bandgap Engineering of AgGaS2 for Optoelectronic Devices: First-Principles Computational Technique. 2020. p. 67-74.
    73. Hoffmann, R., Solids and Surfaces: A Chemist's View of Bonding in Extended Structures. 1988: VCH Publishers.
    74. Sólyom, J., Bonding in Solids, in Fundamentals of the Physics of Solids: Volume I Structure and Dynamics, J. Sólyom, Editor. 2007, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 75-108.
    75. Cordero, B., et al., Covalent radii revisited. Dalton Transactions, 2008(21): p. 2832-2838.

    下載圖示
    校外:立即公開
    QR CODE