| 研究生: |
莊雅蓉 Chuang, Ya-Jung |
|---|---|
| 論文名稱: |
應用雙層壓電懸臂樑於振動能源採集器之研究 Development of Vibration Energy Harvester by Bimorph Piezoelectric Cantilever Beams |
| 指導教授: |
楊世銘
Yang, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 能源採集器 、儲存電路 、雙層壓電片 |
| 外文關鍵詞: | Energy harvester, Storage circuit, Bimorph |
| 相關次數: | 點閱:129 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電式能源採集器可將周遭環境之振動能轉換為可使用的電能,隨著科技進步,低耗功產品越來越多,壓電式能源採集器的應用變得日益廣泛。本研究提出一尺寸為70×20×2.1mm的雙層壓電懸臂樑能源採集器,配合一包含交流直流轉換器和電容之能量儲存電路,其中電容作為儲存裝置,利用撥動造成壓電懸臂樑自由振盪,並產生能量,轉換為可以使用的電能。一組雙層壓電懸臂樑受到0.5 mm初始位移,每撥動一次,可產生最大輸出功率0.27 mW,最大輸出能量0.27 μJ。本研究藉由連續撥動兩組壓電懸臂樑產生能量,達到使一個LED燈持續發亮的目標,並使用1000 μF的電容儲存電能,而在LED燈發亮之前必須先儲存3 mJ的能量,使電壓上升至2.5 V,此時需持續撥動壓電懸臂樑,LED燈之電壓才能維持在2.5 V保持亮燈。
Piezoelectric energy harvesting is the process to convert ambient vibration energy into usable electric energy. Vibration-to-electricity conversion can be realized because of the development of efficient devices with decreasing power requirement. This thesis proposes an energy harvester design by bimorph piezoelectric cantilever beams with plucking motion. The bimorph piezoelectric energy harvester is made of two piezoelectric layers of size 70×20×0.8mm and a center stainless substrate of size 72×22×0.5mm. The natural frequency is 71.43 Hz. With the initial displacement 0.5 mm, the piezoelectric energy harvester can provide maximum power of 0.27 mW. An LED can be lit after the capacitance in the piezoelectric energy storage circuit stores energy of 3 mJ.
Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., and Nouet, P., ‘‘Nonlinear mechanism in MEMS devices for energy harvesting applications,’’ Journal of Micromechanics and Microengineering, Vol. 20, No. 12, 125020, 2010.
Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Peris, G., Oddo, C. M., ‘‘Piezoelectric energy harvesting solutions,’’ Sensors, Vol. 14, No. 3, pp. 4755-4790, 2014.
Chou, C. M., ‘‘Piezoelectricity mechanics,’’ Chwa, 2003.
Chure, M. C., Wu, L., Wu, K. K., Tung, C. C., Lin, J. S., and Ma, W. C., ‘‘Power generation characteristics of PZT piezoelectric ceramics using drop weight impact techniques: Effect of dimensional size,’’ Ceramics International, Vol. 40, No. 1, pp. 341-345, 2014.
Cui, X., Teng, M., and Hu, J., ‘‘PSPICE-based analyses of the vibration energy harvester system with multiple piezoelectric units,’’ Canadian Journal of Electrical and Computer Engineering, Vol. 38, No. 3, pp. 246-250, 2015.
Dogheche, K., Cavallier, B., Delobelle, P., Hirsinger, L., Cattan, E., Rèmines, D., Marzencki, M., Charlot, B., Basrour, S., and Ballandras, S., ‘‘A bi-stable micromachined piezoelectric transducer for mechanical to electrical energy transformation,’’ Integrated Ferroelectrics, Vol. 76, No. 1, pp. 3-12, 2005.
Eggborn, T., ‘‘Analytical models to predict power harvesting with piezoelectric materials,’’ M. S. dissertation, Virginia Polytechnic Institute and State University, 2003.
Elbahr, H., Ali, T. A., Badawi, A., and Sedky, S., ‘‘Simulation of a new PZT energy harvester with a lower resonance frequency using COMSOL multiphysics,’’ Proceedings of the 2014 COMSOL Conference, pp. 1-7, 2014.
Elvin, N., and Erturk, A., ‘‘Advances in energy harvesting methods’’ Springer, pp. 119-140, 2013.
Erturk, A., and Inman, D. J., ‘‘Issues in mathematical modeling of piezoelectric energy harvesters,’’ Smart Materials and Structures, Vol. 17, 065016, pp. 1-14, 2008.
Fang, H. B., Liu, J. Q., Xu, Z. Y., Dong, L., Wang, L., Chen, D., Cai, B. C., and Liu, Y., ‘‘Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,’’ Microelectronics Journal, Vol. 37, No. 11, pp. 1280-1284, 2006.
Friswell, M.I., and Adhikari, S., ‘‘Sensor shape design for piezoelectric cantilever beams to harvest vibration energy,’’ Journal of Applied Physics, Vol. 108, 014901, pp. 1-6, 2010.
Giusa, F., Giuffrida, A., Trigona, C., Andò, B., Bulsara, A. R., Baglio, S., ‘‘Random mechanical switching harvesting on inductor: A novel approach to collect and store energy from weak random vibrations with zero voltage threshold,’’ Sensors and Actuators A: Physical, Vol, 198, pp. 35-45, 2013.
Guan, M. J., and Liao, W. H., ‘‘On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages,’’ Smart Materials and Structures, Vol. 16, No. 2, pp. 498-525, 2007.
Harb, A., ‘‘Energy harvesting: State-of-the art,’’ Renewable energy, Vol. 36, No. 10, pp. 2641-2654, 2011.
Jaye, I., Popovic, J., and Houin, P., ‘‘The power of footsteps,’’ Yanko Design, URL: http://www.yankodesign.com/2011/03/22/the-power-of-footsteps/ [cited 30 June 2016].
Ju, S., Chae, S. H., Choi, Y., and J, C. H., ‘‘Macro fiber composite-based low frequency vibration energy harvester,’’ Sensors and Actuators A: Physical, Vol. 226, pp. 126-136, 2015.
Kemball-Cook, L., ‘‘Pavegen,’’ URL: http://www.pavegen.com/home [cited 30 June 2016].
Khameneifar, F., Arzanpour, S., and Moallem, M., ‘‘A piezoelectric energy harvester for rotary motion applications: design and experiments,’’ IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 5, pp. 1527-1534, 2013.
Kiran, S., Selvakumar, D., J, M., and Pasupuleti, ‘‘Modeling, simulation and analysis of piezoelectric energy harvester for wireless sensors,’’ IEEE International Conference on Control, Electronics, Renewable Energy and Communications, pp. 63-69, 2015.
Kymissis, J., Kendall, C., Paradiso, J., and Gershenfeld, N., ‘‘Parasitic power harvesting in shoe,’’ The Second IEEE International Conference on Wearable Computing, pp. 132-139, 1998.
Lefeuvre, E., Audigier, D., Richard, C., and Guyomar, D., ‘‘Buck-boost converter for sensorless power optimization of piezoelectric energy harvester,’’ IEEE Transactions on Power Electronics, Vol. 22, No. 5, pp. 2018-2025, 2007.
Lin., C. H., ‘‘Design and fabrication of static force sensor using piezoelectric cantilever beam,’’ M. S. Dissertation, National Cheng Kung University, 2009.
Lin, J. T., and Alphenaar, B., ‘‘Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever,’’ Journal of Intelligent Material Systems and Structures, Vol. 21, No. 13, pp. 1337-1341, 2010.
Mateu, L., and Moll, F., ‘‘Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts,’’ Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 835-845, 2005.
Muralt, P., Marzencki, M., Belgacem, B., Calame, F., and Basrour, S., ‘‘Vibration energy harvesting with PZT micro device,’’ Procedia Chemistry, Vol. 1, No. 1, pp. 1191-1194, 2009.
Ng, T. H., and Liao, W. H., ‘‘Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor,’’ Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 785-797, 2005.
Ottman, G. K., Hofmann, H. F., Bhatt, A. C., Lesieutre, G. A., ‘‘Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,’’ IEEE Transactions on Power Electronics, Vol. 17, No. 5, pp. 669-676, 2002.
Park, J., Lee, S., and Kwak, B. M., ‘‘Design optimization of piezoelectric energy harvester subject to tip excitation,’’ Journal of Mechanical Science and Technology, Vol. 26, No. 1, pp. 137-143, 2012.
Poulin, G., Sarraute, E., and Costa, F., ‘‘Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system,’’ Sensors and Actuators A: Physical, Vol. 116, pp. 461-471, 2004.
Pozzi, M., and Zhu, M., ‘‘Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation,’’ Smart Materials and Structures, Vol. 20, No. 5, 055007, 2011.
Qiu, J., Jiang, H., Ji, H., and Zhu, K., ‘‘Comparison between four piezoelectric energy harvesting circuits,’’ Frontiers of Mechanical Engineering in China, Vol. 4, No. 2, pp. 153-159, 2009.
Redmond, E., ‘‘Sustainable designer turns the alternative energy paradigm on its head,’’ Metropoils Magazine Next Generation Competition Proposal, 2007.
Rocha, J. G., Gonçalves, L. M., Rocha, P. F., Silva, M. P., and Lanceros-Méndez, S., ‘‘Energy harvesting from piezoelectric materials fully integrated in footwear,’’ IEEE Transactions on Industrial Electronics, Vol. 57, No. 3, pp. 813-819, 2010.
Roundy, S., and Wright, P. K., “A piezoelectric vibration based generator for wireless electronics,’’ Smart Materials and Structures, Vol. 13, No. 5, pp. 1131-1142, 2004.
Roundy, S., Wright, P. K., and Rabaey, J., “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, Vol. 26, No. 11, pp. 1131-1144, 2003.
Ryall, J., ‘‘Japan harnesses energy from footsteps,’’ The telegraph URL: http://www.telegraph.co.uk/news/earth/energy/3721841/Japan-harnesses-energy-from -footsteps.html [cited 30 June 2016].
Saxena, S., Sharma, R., and Pant, B. D., ‘‘Design optimization of cantilever based MEMS piezoelectric energy harvester,’’ IEEE International Conference on Device, Circuits and Communications, pp. 1-4, 2014.
Shen, D., Park, J. H., Ajitsaria, J., Choe, S. Y., Wikle, H. C., and Kim, D. J., ‘‘The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting,’’ Journal of Micromechanics and Microengineering, Vol. 18, No. 5, 055017, 2008.
Shi, Q., Wang, T., Kobayashi, T., and Lee, C., ‘‘MEMS based piezoelectric ultrasonic energy harvester for self-powered under-water applications,’’ IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1256-1259, 2016.
Shu, Y. C., and Lien, I. C., ‘‘Analysis of power output for piezoelectric energy harvesting systems,’’ Smart Materials and Structures, Vol. 15, No. 6, pp. 1499-1512, 2006.
Song, H. J., Choi, Y. T., Wereley, N. M., and Purekar, A., ‘‘Comparison of monolithic and composite piezoelectric material-based energy harvesting devices,’’ Journal of Intelligent Material Systems and Structures, Vol. 25, No. 14, pp. 1825-1837, 2014.
Sunithamani, S., Lakshmi, P., and Eba Flora, E., ‘‘PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study,’’ Microsyst Technol, Vol. 20, No. 12, pp. 2165-2171, 2014.
Swallow, L.M., Luo, J. K., Siores, E., Patel, I., and Dodds, D., ‘‘A piezoelectric fiber composited device based energy harvesting device for potential wearable applications,’’ Smart Materials and Structures, Vol. 17, No. 2, 025017, pp. 1-7, 2008.
Tungpimolrut, K., Hatti, N., Phontip, J., Komoljindakul, K., Pechrach, K., and Manooonpong, P., ‘‘Design of energy harvester circuit for a MFC piezoelectric based on electrical circuit modeling,’’ International Symposium on Applications of Ferroelectrics and International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, pp. 1-4, 2011.
Uchino, K., ‘‘Advanced piezoelectric materials,’’ Woodhead, 2010.
van den Ende, D.A., van de Wiel, H. J., Groen, W. A., and van der Zwaag, S., ‘‘Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites,’’ Smart Materials and Structures, Vol. 21, No. 1, 015011, 2012.
Wang, Q. M., and Cross, L. E., ‘‘Constitutive equations of symmetrical triple layer piezoelectric benders,’’ IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, No. 6, pp. 1343-1351, 1999.
Wang, Y., Xu, L. T., and Xu, R. Q., ‘‘An analytical model of piezoelectric vibration energy harvesters,’’ Symposium on Piezoelectricity, Acoustic Waves and Device Applications, pp. 536-539, 2011.
Yang, Y., and Tang, L., ‘‘Equivalent circuit modeling of piezoelectric energy harvesters,’’ Journal of Intelligent Material Systems and Structures, Vol. 20, No. 18, pp. 2223-2235, 2009.