簡易檢索 / 詳目顯示

研究生: 許智欽
Hsu, Chih-Chin
論文名稱: 平面震波與楔形體表面上帶狀區低溫電漿作用之研究
Investigation of Planar Shock on a Wedged Surface with a stripline Low Temperature Plasma
指導教授: 尤芳忞
Yu, Fan-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 113
中文關鍵詞: 電漿震波
外文關鍵詞: plasma, shock
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 入射震波馬赫數1.30~1.69範圍的震波於楔形體表面上低溫電漿作用之定性觀察研究已於國立成功大學航空太空工程所之震波管設備中完成。本實驗使用視流技術之彩色紋影法來擷取震波於斜面35度以及斜面50度楔形體斜面上震波反射的流場結構。平面震波於50度斜面上的反射型態為正規反射,而在35度斜面上之反射型態為馬赫反射。由實驗當中紋影法圖可得知當震波通過低溫電漿時,會造成震波速度減慢、強度減弱,並且形狀改變,反射震波曲率半徑增加,同時配合震波管上壓力感測器所記錄之動態壓力數據,在低溫電漿的作用之下,所測量到反射震波造成的升壓情況較小,且傳遞速度也變慢,由此可確認在低溫電漿的作用之下震波強度的確變弱。

    The investigation of the interaction between planar shock wave of Mach number in range of 1.30~1.69 and wedged surface with a stripline of low temperature plasma been done in the shock tube facility of Institute of Aeronautics and Astronautics in National Cheng-Kung University. The flow structure includes shock reflection on the wedges of 50° and 35° were being recorded by color schlieren flow visualization technique. The shock reflection type on the wedges of 50° is regular reflection and the shock reflection type on the wedges of 35° is Mach reflection. The shock wave propagation through low temperature plasma can result in deceleration and weakening of shock wave and both the shape and curvature of shock wave are also being changed. Also, according to the data of measured reflection wave induced pressure pulse, when the low temperature plasma exist, the pressure pulse measured by PT1 is reduced in comparing with the pulse in flow without the plasma and the velocity of reflection shock wave is also slow down.

    目錄 中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 誌謝.....................................................Ⅲ 目錄.....................................................Ⅳ 表目錄...................................................Ⅵ 圖目錄...................................................Ⅵ 符號說明.................................................XI 第一章 緒論 1.1 研究動機與目的....................................1 1.2 文獻回顧..........................................2 第二章 理論分析 2.1 震波管之基本原理..................................6 2.2 正規反射與馬赫反射................................7 2.3 彩色紋影法基本原理................................8 2.4 低溫電漿.........................................10 第三章 實驗設備與實驗方法 3.1 震波管...........................................12 3.2 測試段以及實驗模型...............................12 3.3 高壓電產生器.....................................13 3.4 壓力數據收集系統.................................13 3.5 光學系統.........................................14 3.6 實驗方法與步驟...................................15 第四章 實驗結果與討論 4.1 平面震波作用於表面無電漿之楔形體上之紋影法流場 觀測.............................................17 4.1.1 模型斜面角度:50度...........................17 4.1.2 模型斜面角度:35度...........................20 4.2 平面震波與楔形體表面上低溫電漿之交互作用........22 4.2.1 模型斜面角度:50度...........................22 4.2.2 模型斜面角度:35度...........................23 4.3 壓力析...........................................24 4.3.1 模型斜面角度:50度...........................25 4.3.2 模型斜面角度:35度...........................26 4.4 彩色紋影圖與壓力分析............................26 4.5 實驗量測之誤差分析..............................27 第五章 結論與建議 5.1結論..............................................30 5.2建議..............................................31 參考文獻.................................................32 附表.....................................................36 附圖.....................................................37 附錄A....................................................95 自述....................................................112 著作權聲明..............................................113 表目錄 表2.3.1 Gladstone-Dale常數表...........................36 圖目錄 圖1.2.1 平面入射震波經楔形體時所產生的兩種典型反射型態(a)正規反射(b)馬赫反射...................................37 圖2.1.1 震波管基本原理(a)震波管示意圖(b)各波面相對位置-時間關係圖(c)管內各區域壓力分佈圖(d)溫度分佈圖..........38 圖2.2.1 平面入射震波經楔形體時所產生的兩種典型反射型態(a)正規反射 (b)馬赫反射.................................38 圖2.3.1 (a)傳統影圖法光路圖 (b)傳統紋影法光路圖.....39 圖3.1.1 震波管裝置圖示意圖..........................40 圖3.1.2 空氣壓縮機..................................41 圖3.1.3 除濕機......................................41 圖3.1.4 儲氣槽 .....................................42 圖3.1.5 真空幫浦....................................42 圖3.1.6 真空壓力感測器..............................43 圖3.1.7 壓力校正器..................................43 圖3.2.1 震波管視窗模型尺寸圖........................44 圖3.2.2 50度斜面模型外觀圖..........................45 圖3.2.3 35度斜面模型外觀圖..........................45 圖3.2.4 35度斜面模型尺寸圖..........................46 圖3.2.5 50度斜面模型尺寸圖..........................47 圖3.2.6 模型於震波管上測試段之示意圖................48 圖3.3.1 高壓電產生系統..............................49 圖3.4.1 壓電式壓力感測器.............................49 圖3.4.2 電荷放大器...................................50 圖3.4.3 編號7616壓力計校驗曲線.......................51 圖3.4.4 編號7617壓力計校驗曲線.......................51 圖3.4.5 編號13993壓力計校驗曲線......................52 圖3.4.6 壓力計設置位置示意圖.........................52 圖3.4.7 SCB-68訊號輸出入連接盒.......................53 圖3.5.1 彩色紋影法的光路設置示意圖...................54 圖3.5.2 脈衝產生器...................................55 圖3.5.3 PALFLASH500型脈衝光源........................55 圖4.1.1 震波通過斜面50度模型反射過程示意圖(a)平面震波往模型移動(b)正規反射震波產生(c)平面震波通過表面銅片........57 圖4.1.2 彩色濾片......................................57 圖4.1.3 典型震波反射之典型彩色紋影圖(a) 模型斜面角度:50度(b) 模型斜面角度:35度.................................58 圖4.1.4 Ms=1.33之震波於50度斜面上不同時續下流場情況(ta<tb<tc<td<te)....................................59 圖4.1.5 Ms=1.42之震波於50度斜面上不同時續下流場情況(ta<tb<tc<td<te)....................................60 圖4.1.6 Ms=1.52之震波於50度斜面上不同時續下流場情況(ta<tb<tc<td<te)....................................61 圖4.1.7 Ms=1.62之震波於50度斜面上不同時續下流場情況(ta<tb<tc<td).......................................62 圖4.1.8 震波通過斜面35度模型反射過程示意圖(a)平面震波往模型移動(b)馬赫反射產生(c)平面震波通過銅片...............64 圖4.1.9 Ms=1.34之震波於35度斜面上不同時續下流場情況(ta<tb<tc<td).......................................65 圖4.1.10 Ms=1.44之震波於35度斜面上不同時續下流場情況(ta<tb<tc<td).......................................66 圖4.1.11 Ms=1.53之震波於35度斜面上不同時續下流場情況(ta<tb<tc<td).......................................67 圖4.1.12 Ms=1.6 之震波於35度斜面上不同時續下流場情況 (ta<tb<tc)..........................................68 圖4.2.1 震波與50度模型斜面上電漿作用示意圖(a)平面震波往模型移動(b)正規反射震波產生(c)平面震波通過表面銅片上之低溫電漿..................................................70 圖4.2.2 Ms=1.33震波與斜面50度模型上電漿交互作用震波反射圖(ta<tb<tc<td<te<tf)................................71 圖4.2.3 Ms=1.42震波與斜面50度模型上電漿交互作用震波反射圖(ta<tb<tc<td)......................................72 圖4.2.4 Ms=1.52震波與斜面50度模型上電漿交互作用震波反射圖(ta<tb<tc<td<te)...................................73 圖4.2.5 Ms=1.62震波與斜面50度模型上電漿交互作用震波反射圖(ta<tb<tc<td)......................................74 圖4.2.6 震波與35度模型斜面上電漿作用示意圖(a)平面震波往模型移動(b)馬赫反射型態產生(c)入射震波通過低溫電漿........76 圖4.2.7 Ms=1.34震波與斜面35度模型上電漿交互作用震波反射圖(ta<tb<tc<td).........................................77 圖4.2.8 Ms=1.41震波與斜面35度模型上電漿交互作用震波反射圖(ta<tb<tc)............................................78 圖4.2.9 Ms=1.53震波與斜面35度模型上電漿交互作用震波反射圖(ta<tb<tc)............................................79 圖4.2.10 Ms=1.62震波與斜面35度模型上電漿交互作用震波反射圖(ta<tb<tc)............................................80 圖4.3.1 斜面50度模型各馬赫數反射震波到達PT1時間.......81 圖4.3.2 斜面50度模型電漿對反射震波影響之壓力分析圖....81 圖4.3.3 斜面35度模型各馬赫數反射震波到達PT1時間.......82 圖4.3.4 斜面35度模型電漿對反射震波影響之壓力分析圖....82 圖4.4.1 平面震波在未加入電漿斜面50度模型上之震波反射紋影圖......................................................83 圖4.4.2 平面震波在加入電漿斜面50度模型上之震波反射紋影圖......................................................84 圖4.4.3 平面震波在未加入電漿斜面35度模型上之震波反射紋影圖......................................................85 圖4.4.4 平面震波在加入電漿斜面35度模型上之震波反射紋影圖......................................................86 圖4.4.5 Ms=1.33時斜面角度50度模型的紋影圖以及壓力比較..87 圖4.4.6 Ms=1.42時斜面角度50度模型的紋影圖以及壓力比較..88 圖4.4.7 Ms=1.52時斜面角度50度模型的紋影圖以及壓力比較..89 圖4.4.8 Ms=1.62時斜面角度50度模型的紋影圖以及壓力比較..90 圖4.4.9 Ms=1.34時斜面角度35度模型的紋影圖以及壓力比較..91 圖4.4.10 Ms=1.41時斜面角度35度模型的紋影圖以及壓力比較..92 圖4.4.11 Ms=1.53時斜面角度35度模型的紋影圖以及壓力比較..93 圖4.4.12 Ms=1.62時斜面角度35度模型的紋影圖以及壓力比較..94 圖A1 Ms=1.33,斜面50度模型PT1壓力數據....................97 圖A2 Ms=1.42,斜面50度模型PT1壓力數據....................99 圖A3 Ms=1.52,斜面50度模型PT1壓力數據...................101 圖A4 Ms=1.62,斜面50度模型PT1壓力數據...................103 圖A5 Ms=1.34,斜面35度模型PT1壓力數據...................105 圖A6 Ms=1.41,斜面35度模型PT1壓力數據...................107 圖A7 Ms=1.53,斜面35度模型PT1壓力數據...................109 圖A8 Ms=1.6,斜面35度模型PT1壓力數據....................111

    [1] G.Ben-dor and K.Takayama,〝The Phenomena of Shock Wave Review of Unsolved Problems and Future Needs,〞Shock Waves,Vol. 2,pp.211-223,1992。
    [2] V.I.Khorunzhenko ,D.V.Roupassov and A.Yu.Starikovskii, “Hypersonic Flow and Shock Wave Structure Control by Low Temperature Nonequilibrium Plasma of Gas Discharge,”AIAA Paper 2002-3569,2000.
    [3] V.Bityurin, A.Klimov, S.Leonov, V.Brovkin, and Y.Kolesnichenko, “ Shock Wave Structure and Velocity at Propagation through Non-homogenous Plasma,”AIAA Paper 2000-2571,2000.
    [4]Z.T.Deng, R.Rojas-Oviedo, Alan Chow, R.Litvhford, “Prediction oh Shock Wave Structure in Weakly Ionized Gas flow”,AIAA Paper 2002-2181,2002.
    [5]J.Reece Roth,”Investigation of Uniform Glow Discharge in Atmospheric Air,”AFOSR Final Scintific Report,PSL-95-4,April 1,1994-March 31,1995.
    [6] J.Reece Roth and Daniel M.Sherman,”Boundary Layer Flow Control with A One Atmosphere Uniform Glow Discharge Surface Plasma,”AIAA Paper 98-0328,1998.
    [7] Richard B.Miles, Sergey O.Macheret, Luigi Martinelli, Robert Murray, Mikhail Shneider, Yu Z.Ionikh, John Kline and Jon Fox,“Plasma control of shock waves in aerodynamics and sonic boom mitigation,”AIAA Paper 2001-3062,2001.
    [8]R.Yano, V.Contini, E.Plonjes, P.Palm, S.Merriman, S.Aithal, and I.Adamovich, ”Supersonic Nonequibrium Plasma Wind-Tunnel Measurement of Shock Modification and Flow Visualization,” AIAA Journal Vol.38,No.10,October 2000.
    [9] S.Merriman, E.Ploenjes, P.Palm, I.V.Adamovich,”Shock Wave Control by Nonequilibrium Plasmas in Cold Supersonic Gas Flow,” AIAA Paper 2000-2327,2000.
    [10] Samuel Merriman, Adam Christian, Rodney Meyer, Brett Kowalczyk, Peter Palm, Igor V.Dmovich,”Studies of Conical Shock Wave Modification by Nonequilibrium RF Discharge Plasma,”AIAA Paper 2001-0347,2001.
    [11] Rodney Meyer, Peter Palm, Elke Plonjes, J.William Rich, and Igor V.Adamovich,”The Effect of A Nonequilibrium RF Discharge Plasma on A Conical Shock Wave in A M=2.5 Flow,”AIAA Paper 2001-3059,2001.
    [12] William M.Hilbun,” Shock Wave in Nonequilibrium Gases and Plasma,”Ph.D.dissertation, Air Force Institute of Technology, October 1997.
    [13] S.H.Zaidi, M.N.Shneider, D.K.Mansfield, Y.Z.Ionikh, R.B.Miles,“Influence of Upstream Pulsed Energy Deposition on a Shockwave Structure in Supersonic Flow,” AIAA Paper 2002-2703,2002.
    [14] Y.Z.Ionikh, N.V.Chernysheva, A.P.Yalin, S.O.Macheret, L.Martinelli,and R.B.Miles,”Shock Wave Propagation through Glow Discharge Plasmas: Evidence of Thermal Mechanism of Shock Dispersion,”AIAA Paper 2000-0714,2000.
    [15]林孟嫻,”平面震波於低溫電漿包覆面上交互作用之研究,”成大航太所碩士論文,2006。
    [16]A.R Maddox and R.C.Binder,”A new Dimension in Schlieren Technique: Flow Field Analysis Using Color,” AIAA paper 70-223, 1970。
    [17]G.B.Sobeiraj and A.P.Szumowski,”Experimental Investigations of an Underexpanded Jet from a Convergent Nozzle Impinging on Cavity,”Journal of Sound and Vibration, Vol. 149, No.3, pp. 369-375, 1991。
    [18]G.S.Settles,”Modern Developments in Flow Visualization,” AIAA Journal, Vol. 24, No. 8, pp. 1313-1323, 1986。
    [19]I.I. Glass and G.N. Patterson,〝A Theoretical and Experimental Study of Shock-Tube Flow,〞 Journal of Aeronautical Sciences, Vol. 22,No. 2,pp.73-100,1955。
    [20]A.G.Gaydon and I.R.Hurle,The Shock Tube in High Temperature Chemical Physics, Reinhold Publishing Corp., New York, pp.1-63, 1963。
    [21]J.A.Owezarck,Fundamentals of Gas Dynamics, International Texbook Company, pp. 395-398,1964。
    [22]G.Ben-Dor,Shock Wave Reflection Phenomena, Springer-Verlag, pp. 41-53, 1992。
    [23]R.J.Goldstein, Fluid Mechanics Measurements, Second edition, Taylor & Francis publishers, University of Minnesota, pp. 451-474, 1996。
    [24]V.E.Golant, A.P.Zhilinsky and I.E.Sakharov ,Fundamentals of Plasma Physics,J.Wiley,1980.
    [25] 陳偉仁,”平面震波於楔形體與垂直鰭片模型所產生反射-繞射現象之探討,”成大航太所碩士論文,2004。

    下載圖示 校內:立即公開
    校外:2007-08-13公開
    QR CODE