簡易檢索 / 詳目顯示

研究生: 羅晨
Lo, Chen
論文名稱: 具耦合自調適特性之人造手指的設計、製造與控制
The Design, Manufacturing and Control of an Artificial Finger with Coupling-and-Self-Adaption Mechanism
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 欠驅動人造手指模糊控制耦合自調適機構
外文關鍵詞: under-actuation, artificial fingers, fuzzy control, coupling-and-self-adaption mechanism
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究目的在於實現具耦合自調適之欠驅動人造手指,並利用模糊控制使手指彎曲來驗證四種手指姿態。本文中由運動學分析手指機構;由向量迴路法推導各桿件角度位置;由桿件間角度關係與手指之靜力學決定手指桿件尺寸。在做控制前,我們對驅動馬達進行建模,並以模糊控制解決建模誤差與干擾對系統的影響。實驗結果顯示,指尖位置與模擬值比較約有6~18mm的誤差方均根。並以第二種姿態在彎曲51.7度時有0.46mm(X座標)和0.19mm(Y座標)誤差最小。

    The purpose of this thesis is to realize an under-actuated artificial finger with coupling-and-self-adaption mechanism, and verify four types of finger gesture under fuzzy logic control. In particular, the finger mechanism is analyzed with kinematics; angles of each link that composes the finger are derived with vector loop method; the finger's dimension is determined by the angular relationship between links and their static equilibrium. Before controlling the finger, the motor's model is identified, and fuzzy logic control is utilized to solve problems of modeling error and disturbances. Experimental results show a 6~18 mm root-mean-square error at the fingertip compared to the simulation. Besides, the minimum error appears when the finger bends 51.7 degrees in the second type of finger gesture, and the corresponding error is 0.46 mm in X-coordinate and 0.19 mm in Y- coordinate.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . iii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . v 第一章緒論.. . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機. . .. . . . . . . . . . . . . . . . . . . . 1 1.2 本文架構. . . . . . . . . . . . . . . . . . . . . . 3 第二章設計與分析. . . . . . . . . . . . . . . . . . . . . 4 2.1 人類手部構造. .. . . . . . . . . . . . . . . . . . . 4 2.2 人造手指運動學分析. . . . . . . . . . . . . . . . . . 5 2.3 人造手指機構設計. . . .. . . . . . . . . . . . . . . 16 2.4 設計結果. . . . . . . . . . . . . . . . . . . . . . 27 第三章影像處理. . . . . . . . . . . . . . . . . . . . . 30 3.1 二值影像. . . . . . . . . . . . . . . . . . . . . . 30 3.2 霍氏轉換. . . . . . . . . . . . . . . . . . . . . . 32 第四章控制方法與模擬. .. . . . . . . . . . . . . . . . . 35 4.1 控制器設計. . . . . . . . . . . . . . . . . . . . . 35 4.1.1 模糊控制器架構. . . . . . . . . . . . . . . . . .36 4.1.2 歸屬函數與模糊決策邏輯規則表 . . . . . . . . . . . 38 4.1.3 模糊控制器的輸出. . . . . . . . . . . . . . . . . 41 4.2 系統建模與控制器模擬. . . . . . . . . . . . . . . . 42 第五章實驗結果與討論. . . . . . . . . . . . . . . . . . 50 5.1 實驗架構. . . . . . . . . . . . . . . . . . . . . . 50 5.2 手指姿態驗證. . . . . . . . . . . . . . . . . . . . 55 5.2.1 第一種模態手指姿態. . . . . . . . . . . . . . . . 57 5.2.2 第二種模態手指姿態. . . . . . . . . . . . . . . . 60 5.2.3 第三種模態手指姿態. . . . . . . . . . . . . . . . 63 5.2.4 第四種模態手指姿態. . . . . . . . . . . . . . . . 66 5.3 結果與討論. . . . . . . . . . . . . . . . . . . . . 69 第六章結論與未來工作. . . . . . . . . . . . . . . . . . 70 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . 70 6.2 未來工作. . . . . . . . . . . . . . . . . . . . . . 70 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . 72

    [1] R. Bischoff et.al. The kuka-dlr lightweight robot arm a new reference platform for robotics research and manufacturing. Proc. 41st Int'l Symp. Robotics(ISR), and Sixth German Conf. Robotics (ROBOTIK), pages 1-8, 2010.
    [2] E. M. Michael. Robotic surgery: urologic implications. Journal of Endourology, 17:695-708, 2003.
    [3] Y. S. Kwoh, J. Hou, E. A. Jonckheere, and S. Hayati. A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery.Biomedical Engineering, 35, 1998.
    [4] J. M. Sackier and Y. Wang. Robotically assisted laparoscopic surgery. From concept to development. Springer-Verlag, 1996.
    [5] S. C. Jacobsen, E. K. Inversen, D. F. Knutti, K. B. Johnson, and K. B. Biggers. Design of the utah/mit dextrous hand. IEEE Int. Conf. on Robotics and Automation, 3:1520-1532, 1986.
    [6] Inc. Barrett Technology. BarrettHand— BH8-SERIES User Manual. Barrett Technology, Inc.
    [7] R. Mahmoud, A. Ueno, and S. Tatsumi. An assistive tele-operated anthropomorphic robot hand: Osaka city university hand ii. Proceedings of the 6th international conference on Human-robot interaction, 2011.
    [8] Butterfa P. J., M. Fischer, M. Grebenstein, S. Haidacher, and G. Hirzinger. Design and experiences with dlr hand ii. World Automation Congress, 2004.
    [9] Shadow Robot Company. Design of a dexterous hand for advanced clawar applications. Shadow Robot Company, 2003.
    [10] Ryuta Ozawa Kazuki Mitsui and Toshiyuki Kou. An under-actuated robotic hand for mutiple grasps. IEEE, pages 5475-5480, 2013.
    [11] M. C. Carrozza P. Dario B. Massa, S. Roccella. Design and development of an underactuated prosthetic hand. IEEE, pages 3374-3379, 2002.
    [12] Lionel Birglen Thierry Laliberte and Clement M. Gosselin. Underactuation in robotic grasping hands. Machine Intelligence and Robotic Control, 4:1-11, 2002.
    [13] E. ROCON J.L. PONS and R. CERES. The manus-hand dextrous robotics upper limb prosthesis mechanical and manipulation aspects. Autonomous Robotics, pages 143-163, 2004.
    [14] AARON M. DOLLAR and ROBERT D. HOWE. Towards grasping in unstructured environments grasper compliance and con guration optimization. Taylor and Francis, 2012.
    [15] S. Naumann N. Dechev, W.L. Cleghorn. Multiple nger, passive adaptive grasp prosthetic hand. Mechanism and Machine Theory, pages 1157-1173, 2001.
    [16] IEEE Lionel Birglen, Student Member and IEEE Clement M. Gosselin, Member. Kinetostatic analysis of underactuated ngers. ROBOTICS AND AUTOMATION, 20:211-221, 2004.
    [17] Lionel Birglen and Clement M. Gosselin. Geometric design of three-phalanx underactuated ngers. ASME, 128:356-364, 2006.
    [18] Hongbin Liu Xiande Ma Qiang Chen Dong Du Wenzeng Zhang, Demeng Che and Zhenguo Sun. Super under-actuated multi- ngered mechanical hand with modular self-adaptive gear-rack mechanism. Industrial Robot, 36:255-262, 2009.
    [19] HAIPENG ZHOU ZHENGUO SUN DONG DU WENZENG ZHANG,
    DEYANG ZHAO and QLANG CHEN. Two-dof coupled and self-adaptive(cosa) nger a novel under-actuated mechanism. Humanoid Robotics, 10:1-26, 2013.
    [20] Deyang Zhao and Wenzneg Zhang. Topology and Analysis of Three-Phalanx COSA Finger Based on Linkages for Humanoid Robot Hands. Springer-Verlag, 2010.
    [21] G.Herrmann J. Jalani and C. Melhuish. Robust trajectory following for underactuated robot ngers. Control, pages 1-6, 2010.
    [22] C.C. Lee. Fuzzy logic in control system:fuzzy logic controller, partii. IEEE Trans. System, Man and Cyb, 20:404-435, 1990.
    [23] Guang-Chyan Hwang and Shih-Chang Lin. A stability approach to fuzzy control design for nonlinear systems. Fuzzy Sets and Systems, 48:279-287, 1992.
    [24] T. D. White, M. T. Black, and P. A. Folkens. Human osteology. Academic Press, 1991.
    [25] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson Education Taiwan Ltd, 2008.
    [26] K. H. Kao. Desing and visual servo control of a sma actuated biomimetic hand. Master's thesis, National Cheng Kung University, 2012.
    [27] L. A. Zadeh. Fuzzy sets. Inform. Contr., 8:338-353, 1965.
    [28] E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the IEEE, 121:1585-1588, 1974.
    [29] C.C. Lee. Fuzzy logic in control system:fuzzy logic controller, parti. IEEE Trans. System, Man and Cyb, 20:404-435, 1990.
    [30] RAYMOND A. DECARLO etc. Variable structure control of nonlinear mutivariable systems:a tutorial. IEEE, 76:212-232, 1988.

    下載圖示 校內:2017-07-29公開
    校外:2017-07-29公開
    QR CODE