| 研究生: |
楊翰勳 Yang, Hang-Suin |
|---|---|
| 論文名稱: |
熱延遲式史特靈引擎之理論分析與製作 Theoretical Analysis and Manufacturing of a Thermal-Lag Stirling Engine |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 熱延遲式 、史特靈引擎 、理論模型 |
| 外文關鍵詞: | Thermal lag, Stirling engine, Theoretical Model |
| 相關次數: | 點閱:106 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討熱延遲式史特靈引擎的運作原理。先期以模型引擎作為研究基礎,觀察不同操作條件下,引擎之動力性質。後期架構熱延遲式史特靈引擎之熱力與動力模式,模擬引擎性能,並探討引擎起始轉速、飛輪慣量、衝程、缸徑、各部位體積、再生加熱器設計參數、以及熱阻等設計參數對引擎性能的影響。
研究結果指出,飛輪起始動能的大小對於引擎的運轉狀態有決定性的影響,若起始動能太小,飛輪將進入左右擺盪的狀態或停止,只有當起始動能足夠大,才能使引擎啟動,並穩定運轉。引擎的汽缸缸徑、活塞衝程與各部位體積的搭配相當重要,皆會影響引擎的運轉狀態與性能。再生加熱器的設計尤為重要,除了進行工作流體的再生外,還必須進行工作流體與高溫熱儲之間的熱交換。模擬結果指出,熱效率與機械效率隨引擎運轉速度增加而降低,而引擎存在最佳操作轉速使其軸功最大。藉由理論模式進行參數分析,找出最佳之參數組合,並設計新型引擎,且試運轉成功,引擎轉速可達1600 rpm。
This study is concerned with the development of numerical model of thermal-lag Stirling engine. Preliminary model engines were manufactured firstly, and some dynamic characteristics at different operating conditions were observed. Thermodynamic and dynamic numerical models were built and combined to study the performance of the engine. Effects of the initial engine speed, the inertial of flywheel, the bore size, the stroke of piston, the volume of working space, the parameter of regenerative heater, and the thermal resistance are investigated.
Results show that the magnitude of initial kinetic energy of the flywheel will affect the stable operation mode. If the initial kinetic energy of the flywheel is too small, the flywheel may swing back-and-forth or even stop. It is only when the initial kinetic energy of the flywheel is sufficiently high, the engine can be started to reach a stable operation mode. The collocation among the bore size, the stroke of piston, and the volume of working space is critical. It may affect the operation mode and the performance of the engine. The regenerative heater should be carefully designed because the function of the regenerative heater is not only for regeneration, but also for heat exchanging between the working fluid and the thermal reservoir. It is also found that the thermal efficiency and the mechanical efficiency decrease with increasing engine speed. There exists an optimal engine speed for maximum shaft work. A parametric study is performed based on the numerical model so as to determine the optimal combination of the design parameters. A test engine is designed in accordance with the obtained optimal design parameters combination. It is observed that the test engine is operating successfully and the engine speed is able to reach 1600 rpm.
參考文獻
1. R. Dracker and P. De Laquil, Progress commercializing solar-electric power systems. 1996, Annual Reviews Inc: Palo Alto, CA, United States. p. 371-402.
2. T. R. Mancini. Solar-electric dish Stirling system development. SAND97-2924C, December, 1997. 1.
3. C. M. Hargreaves. The Philips Stirling engine. Elsevier, New York, 1991.
4. J. R. Senft. Ringbom Stirling engines. Oxford University Press, USA, 1993.
5. B. Ross. Status of the emerging technology of Stirling machines. IEEE Aerospace and Electronic Systems Magazine, 1995. 10(6): p. 34-39.
6. D. G. Thombare and S. K. Verma. Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 2008. 12(1): p. 1-38.
7. A. J. Organ. Thermodynamics and gas dynamics of the Stirling cycle machine. Cambridge University Press Cambridge, 1992.
8. J. R. Senft and G. Walker. Free Piston Stirling Engines. Springer-Verlag, 1985.
9. N. C. J. Chen and C. D. West. A single-cylinder valveless heat engine. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1987.
10. P. L. Tailer. External combustion Otto cycle thermal lag engine. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1993. 1: p. 943-947.
11. P. L. Tailer. Thermal lag test engines evaluated and compared to equivalent Stirling engines. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1995. 3: p. 353-357.
12. C. D. West. Some single-piston closed-cycle machines and Peter tailer's thermal lag engine. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1993. 2: p. 673-679.
13. P. Arques. Theoretical and numerical study, improvement of the Wicks-Tailer cycle. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1995. 3: p. 407-412.
14. J. R. Senft. Mechanical efficiency of heat engines. Cambridge Univ Pr, 2007.
15. C.-H. Cheng and Y.-J. Yu. Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism. Renewable Energy, 2010. 35(11): p. 2590-2601.
16. C.-H. Cheng and Y.-J. Yu. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models. Renewable Energy, 2011. 36(2): p. 714-725.
17. I. H. Shames. Engineering Mechanics: Dynamics. Prentice-Hall, 1966.
18. N. Dukhan. Correlations for the pressure drop for flow through metal foam. Experiments in fluids, 2006. 41(4): p. 665-672.
19. S. Mahjoob and K. Vafai. A synthesis of fluid and thermal transport models for metal foam heat exchangers. International Journal of Heat and Mass Transfer, 2008. 51(15-16): p. 3701-3711.
20. J. W. Paek, et al. Effective Thermal Conductivity and Permeability of Aluminum Foam Materials 1. International Journal of Thermophysics, 2000. 21(2): p. 453-464.
21. J. R. Sodre and J. A. R. Parise. Friction factor determination for flow through finite wire-mesh woven-screen matrices. Journal of fluids engineering, 1997. 119: p. 847.
22. R. S. Wakeland and R. M. Keolian. Measurements of resistance of individual square-mesh screens to oscillating flow at low and intermediate Reynolds numbers. Journal of fluids engineering, 2003. 125: p. 851.
23. T. S. Zhao and P. Cheng. Oscillatory pressure drops through a woven-screen packed column subjected to a cyclic flow. Cryogenics, 1996. 36(5): p. 333-341.
24. W. M. Kays and A. L. London. Compact heat exchangers. McGraw-Hill, 1964.
25. R. K. Shah and A. L. London. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic press New York, NY, 1978.
26. B. Kongtragool and S. Wongwises. Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator. Renewable energy, 2006. 31(3): p. 345-359.
27. Y. Timoumi, I. Tlili, and S. Ben Nasrallah. Performance optimization of Stirling engines. Renewable Energy, 2008. 33(9): p. 2134-2144.
28. G. Tae Lee, B. Ha Kang, and J. H. Lee. Effectiveness enhancement of a thermal regenerator in an oscillating flow. Applied thermal engineering, 1998. 18(8): p. 653-660.
29. F. P. Incropera, et al. Fundamentals of heat and mass transfer. John Wiley and Sons, Inc., New York, 2007.
30. M. J. Moran and H. N. Shapiro. Fundamentals of engineering thermodynamics. John Wiley & Sons Inc, 2006.
31. G. W. Swift and S. L. Garrett. Thermoacoustics: A unifying perspective for some engines and refrigerators. The Journal of the Acoustical Society of America, 2003. 113: p. 2379.
32. H. Karabulut, et al. Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renewable Energy, 2010. 35(1): p. 138-143.
33. H. Karabulut, et al. An experimental study on the development of a beta-type Stirling engine for low and moderate temperature heat sources. Applied Energy, 2009. 86(1): p. 68-73.
34. A. Sripakagorn and C. Srikam. Design and performance of a moderate temperature difference Stirling engine. Renewable Energy, 2011. 36(6): p. 1728-1733.