| 研究生: |
柯柏宏 ke, bo-hung |
|---|---|
| 論文名稱: |
機車防鎖死煞車系統控制於側傾狀態之研究 A Study of Anti-lock Brake Control System for Cambering Motorcycle |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 側傾角 、壓力控制 、防鎖死煞車系統 |
| 外文關鍵詞: | anti-lock brake system, pressure control, camber angle |
| 相關次數: | 點閱:93 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的目的在於探討機車具側傾角與轉向角時,液壓防鎖死煞車控制系統加入側向加速度考量對於機車煞車穩定性之影響。故本文首先建立具側傾角與轉向角的機車非線性模型,再加上液壓防鎖死煞車模組之數學模型和Pacejka之機車輪胎模式以模擬煞車情形。而在液壓防鎖死煞車系統之控制器方面,可分為決定控制命令之控制邏輯與驅使系統追蹤該控制命令之控制法則。防鎖死煞車系統常見之控制邏輯為滑差、車輪角速度、煞車壓力等。本文利用回授車輛之煞車壓力、角減速度、和側向加速度,建立一組壓力判斷邏輯,適當的進行壓力的判斷,而追蹤該控制命令之控制器,則是設計了一模糊滑動控制器進行追蹤控制。
The purpose of this study is to discuss ABS control system conclude lateral acceleration when the motorcycle has camber and steer angle. First, the study constructs the nonlinear model of motorcycle which has camber and steer angle, then it accedes the ABS model and Pacejka tire model to simulate the process of the brake. The controller of the ABS is composed of the control logic for the determination of the commands to the ABS controller and the control rule for the tracing of the commands. The common physical variables utilized in the ABS control logic are slip ratio, wheel angular velocity, brake pressure and so on. The study is to use brake pressure, wheel angular acceleration and lateral acceleration feedback to establish a pressure control logic for estimating the pressure adequately and to design a fuzzy-sliding mode controller to trace the pressure command.
1.吳銘欽, “汽車防鎖死煞車系統控制之研究”, 國立成功大學機械工程研究所博士論文, 2002.
2.邱永聰,“防滑煞車系統於機車轉向煞車之研究”, 逢甲大學自動控制學系碩士班碩士論文,民國92年。
3.陸振原,“機車液壓防鎖死煞車模組設計與系統控制之研究”, 國立成功大學機械工程研究所博士論文。民國94年6月。
4.Pacejka H.B. and Bakker E., “The Magic Formula Tyre Model”, Vehicle System Dynamics, Vol. 21, No. Suppl, pp. 1-18, 1993.
5.Zanten A., Erhardt R. and Lutz A., “Measurement and Simulation of Transients in Longitudinal and Lateral Tire forces”, SAE Transactions, Vol. 99, No. Sect 6, pp. 300-318, 1990
6.Pacejka H.B. and Besselink I.J.M., “Magic Formula Tyre Model with Transient Properties”, Vehicle System Dynamics, Vol. 27, No. Suppl, pp. 234-249, 1997.
7.Miennert R.J., “Antilock Brake system Application to a Motorcycle Front Wheel”, SAE Paper No.740630, 1974.
8.Cart J., “An anti-lock braking system for motorcycles”, IMechE Conference Publications (Institution of Mechanical Engineers), pp. 127-138, 1985.
9.Hikichi T., Tomari T, Katoh M. and Thiem M., “Research on motorcycle antilock brake system - Part 2. Influence on motorcycle braking in turn”, Proceedings - International Symposium on Automotive Technology & Automation, Vol. 3, pp. 55-62, 1990.
10.Limebeer D.J.N., Sharp R.S., Evangelou S., “The stability of motorcycles under acceleration and braking”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 215, No. 9, pp. 1095-1110, 2001.
11.Sato T., “Antilock Brake Control System for a Motorcycle Front Wheel”, U.S. Patent No. 4123118, 1978.
12.Grimm A., “Development of Anti-Lock Braking Regulations in the UK”, IMechE Conference Publications (Institution of Mechanical Engineers), pp. 73-77, 1985.
13.Roll G., Ohm, H.F. and Hauser B., “Method of regulating the braking force of motorcycles”, U.S. Patent No. 5386366, 1995.
14.Djoko S. and Rafik A.A., “Development of brake simulator”, Proceedings of the 6th International Pacific Conference on Automotive Engineering, pp. 365-370, 1991.
15.Chen C-K. and Wu J-D., “Development of fuzzy controlled ABS systems for motorcycles”, International Journal of Vehicle Design, Vol. 34, No. 1, pp. 84-100, 2004.
16.Chen P-H., Hwu L-C. and Juang P-A., “Hydraulic anti-locking brake system for motorcycle”, U.S. Patent No. 6715848, 2004.
17.李連春, “液壓防止鎖死煞車系統控制器設計之研究”, 國立成功大學機械工程學系碩士論文, 民國86年.
18.Merritt H.E., “Hydraulic Control System”, John Wiley & Sons, Inc., 1967
19.Matouka M.F. et al., “Anti-Lock Braking System”, U.S. Patent No. 5211455, 1993.
20.Bayle P., Forissier J.F. and Lafon S., “A new tyre model for vehicle dynamics simulations”, Automative Technology International’93, pp. 193-198, 1993.
21.楊易昇, “機車防鎖死煞車系統之控制與實作”, 大葉大學機械工程研究所碩士論文, 民國89年.
22.許惠琳, “機車動態三維模擬之研究”, 大葉大學機械工程研究所碩士論文, 民國91年.
23.R.S. SHARP,S. EVANGELOU and D.J.N. LIMEBEER,“Advances in the Modeling of Motorcycle Dynamics ” Multibody System Dynamics 12: 251–283, 2004.
24.A. Mirzaei, M. Moallem, Senior Member, IEEE, and B. Mirzaeian, ‘Designing a Genetic-Fuzzy Anti-lock Brake System Controller’, International Symposium on Intelligent Control Limassol ,Cyprus, June 27-29, 2005
25.Sharp, R.S.: The Stability and Control of Motorcycles. J. Mech. Eng. Sc. 13(5), pp. 316±329,1971
26.Christian Sobottka,Tarunraj Singh’ Optimal Fuzzy Logic Control for an Anti-Lock Braking System’Proceedings of the 1996 IEEE International Conference on Control ApplicationsDearborn, MI September 15-18. 1996
27.Meijaard, J. P. and Popov, A. A. 'Tyre modelling for motorcycle dynamics', Vehicle System Dynamics, 43:1, 187 – 198, 2005
28.Sugai, Masuru, Yamaguchi, Hiroyuki, Miyashita, Masanori, Umeno, Takaji and Asano, Katsuhiro 'New Control Technique for Maximizing Braking Force on Antilock Braking System', Vehicle System Dynamics, 32:4, 299 -312, 1999
29.陈炯,王会义,宋健’基于滑移率和减速度的ABS模糊控制防真研究’,Automotive Engineering 2006年(第28卷)第二期
30.Cossalter, Vittore and Lot, Roberto 'A Motorcycle Multi-Body Model for Real Time Simulations Based on the Natural Coordinates Approach', Vehicle System Dynamics, 37:6, 423 – 447, 2002
31.朱學熙,’機車過彎時之穩態行為及穩定性分析’國立台灣大學機械工程研究所碩士論文,民國96年
32.de Vries, E.J.H. and Pacejka, H.B. 'MOTORCYCLE TYRE MEASUREMENTS AND MODELS', Vehicle System Dynamics, 29:1, 280 – 298,1998
33.Cossalter, Vittore, Doria, Alberto and Lot, Roberto ‘Steady Turning of Two-Wheeled Vehicles', Vehicle System Dynamics, 31:3, 157 -181, 1999
34.ROBERTO LOT,’A Motorcycle Tire Model for Dynamic Simulations: Theoretical and Experimental Aspects’, Meccanica 39: 207–220, 2004.
35.Zadeh L.A., “Fuzzy set”, Inform. Control, Vol. 8, pp. 338-353, 1965.
36.Zadeh L.A., “Toward a Theory of Fuzzy Systems”, NASA CR-1432, 1969.
37.Wang W.-Y., Hsu K.-C., Lee T.-T. and Chen G.-M., “Robust Sliding Mode-Like Fuzzy Logic Control for Anti-Lock Braking Systems with Uncertainties and Disturbances”, International Conference on Machine Learning and Cybernetics, Vol. 1, pp. 633-638, 2003.
38.Slotine J.-J. E, “Sliding Controller Design for Non-Linear Systems”, International Journal of Control, Vol. 40, No. 2, pp. 421-434, 1984.
39.Wu M.-C. and Shih M.-C., “Hydraulic anti-lock braking control using the hybrid sliding-mode pulse width modulation pressure control method”, Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, Vol. 215, No. 2, pp. 177-187, 2001.
40.Sergio M. Savaresi, Mara Tanelli, Carlo Cantoni”Mixed Slip-Deceleration Control in Automotive Braking Systems” ASME, 2007
41.陳永平(民88)。可變結構控制設計。全華科技圖書股份有限公司
42.Slotine,J.J.E & Sastry,S.S. (1983). Tracking control of nonlinear systems using sliding mode surfaces with application to robot manipulators. International Journal of control,38,465-492
43.D. H. Weir, Motorcycle Handling Dynamics and Rider Control and the Effect of Design Configuration on Response and Performance, University of California atLos Angeles, Ph.D. Thesis, June 1972.
44.Hans B. Pacejka, ”Tire and Vehicle Dynamic”,2002
45.Guo K. and Liu Q., “Modeling and Simulation of Non-Steady State Cornering Properties and Identification of Structure Parameters of Tyre”, Vehicle System Dynamics, Vol. 27, No. Suppl, pp. 80-93, 1997.
46.Masao W. and Noboru N., “New algorithm for ABS to compensate for road-disturbance”, SAE (Society of Automotive Engineers) Transactions, Vol. 99, No. Sect 6, pp. 271-279, 1990.
47.William P.-L., “Hybrid Modelling and Limit Cycle Analysis for a Class of Anti-lock Brake Algorithms”, 7th International Symposium on Advanced Vehicle Control, pp. 245-250, 2004.