簡易檢索 / 詳目顯示

研究生: 岳翰林
Yue, Han-Lin
論文名稱: 毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製
Research on Millimeter-Wave CMOS On-Chip Antennas and Artificial Magnetic Conductor (AMC) Antennas
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 毫米波CMOS射頻嵌入式天線人造磁導體天線
外文關鍵詞: Millimeter-wave, CMOS, on-chip antenna, artificial magnetic conductor antenna
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計研製毫米波CMOS射頻晶片嵌入式天線,包含60-GHz CMOS摺合式偶極子天線及整合Yagi天線與非平衡轉平衡式帶通濾波器之射頻晶片、利用人造磁導體改善輻射效率之77 -GHz CMOS偶極子天線、及整合毫米波CMOS人造磁導體天線及非平衡轉平衡式帶通濾波器於60-GHz次諧波射頻前端接收機。60-GHz CMOS摺合式偶極子天線採用TSMC CMOS 0.18-μm製程,主要以改良傳統摺合式偶極子天線架構實現完成;60-GHz CMOS Yagi天線與非平衡轉平衡式帶通濾波器之整合晶片採TSMC CMOS 90-nm製程,彚整傳統Yagi天線並採電容性耦合縮小化的設計概念,並與非平衡轉平衡式帶通濾波器整合;利用人造磁導體改善輻射效率之77 -GHz CMOS偶極子天線採用TSMC CMOS 0.18-μm製程,以人造磁導體高阻抗特性減少電磁場進入高損耗基板,提高天線輻射效率(從5% 增加至15%)及功率增益。設計之天線訊號饋入系統皆以共面波導饋入方式完成設計。使用Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部份則採以on-wafer方式進行。

    This thesis presents the design of millimeter-wave CMOS on-chip antennas, including a 60-GHz folded dipole antenna, a 60-GHz CMOS integrated Yagi-antenna and balun-filter, a 77-GHz dipole antenna using artificial magnetic conductor (AMC) to increase the radiation efficiency (from 5% to 15%), and a 60-GHz CMOS integrated on-chip AMC-antenna and balun-filter for a mm-wave sub-harmonic receiver RF front-end. The three-dimensional (3-D) EM simulator HFSS is used for design simulation. The on-chip antennas are fabricated with TSMC CMOS 0.18-μm and 90-nm process, respectively. The performances of the designed millimeter-wave CMOS on-chip antennas are all conducted by using the on-wafer measurement setup.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 2 第二章 60-GHz CMOS摺合式偶極子天線 3 2.1 摺合式偶極子天線基本原理 3 2.1.1 阻抗匹配性質 3 2.2 60-GHz CMOS摺合式偶極子天線 5 2.2.1 架構簡介 5 2.2.2 設計流程與考量 6 2.2.3 模擬與量測結果 8 2.3 結果與討論 13 第三章 60-GHz CMOS Yagi天線與非平衡轉平衡式 帶通濾波器整合晶片 15 3.1 CMOS被動元件縮小化以及Yagi天線基本原理 15 3.1.1 CMOS被動元件縮小化及損耗問題 15 3.1.2 Yagi-Uda天線基本原理[4][5][12] 16 3.2 60-GHz CMOS Yagi天線與非平衡轉平衡式帶通濾波器之 整合晶片 18 3.2.1 架構簡介 18 3.2.2 設計流程與考量 20 3.2.3 模擬與量測結果 21 3.3 結果與討論 31 第四章 利用人造磁導體改善輻射效率之77 -GHz CMOS 偶極子天線 35 4.1 人造磁導體(AMC)架構與基本原理 35 4.1.1 人造磁導體基本原理 35 4.1.2 耶路撒冷十字架人造磁導體架構 40 4.2 77 -GHz CMOS AMC偶極子天線 43 4.2.1 架構簡介 43 4.2.2 設計流程與考量 45 4.2.3 模擬與量測結果 46 4.3 結果與討論 55 第五章 整合毫米波CMOS人造磁導體天線及非平衡轉平衡式帶通濾波器於60-GHz次諧波射頻接收機 57 5.1 架構簡介 57 5.1.1 設計流程與考量 58 5.2 模擬與量測結果 59 第六章 結論 73 參考文獻 75 附錄A 共面波導(Coplanar Waveguide, CPW)與共面帶線 (Coplanar Stripline)簡介[61] 81 附錄B 非平衡轉平衡式帶通濾波器簡介[19] 85 附錄C 偶極子天線(Dipole)簡介[4][5] 91 附錄D 使用TSMC CMOS 0.18μm製程之50-85 -GHz平面式倒F天線 95 D.1 平面式倒F天線基本原理 95 D.1.1 倒F天線基本概念 95 D.1.2 開槽雙共振模態之平面式倒F天線 98 D.2 50-85 –GHz寬頻全向性CMOS嵌入式平面倒F型天線 99 D.2.1 架構簡介 99 D.2.2 設計流程與考量 100 D.2.3 模擬結果 102 D.3 結果與討論 108 附錄E 射頻晶片嵌入式天線功率增益量測方法[61] 109 E.1 VSWR與利用兩相同射頻晶片天線量測功率增益方法 109 E.1.1 考慮量測探針機台之金屬平台效應(metallic-plate effect) 111 E.2 射頻晶片天線輻射場型量測方法 115

    [1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
    [2] RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
    [3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
    [4] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
    [5] C. A. Balanis, Antenna Theory and Design, 3rd ed. New York: Wiley, 2005
    [6] K. Sekine, H. Iwasaki, “USB memory size antenna for 2.4 GHz wireless LAN and UWB,” in Proc. IEEE European Microw. Conf., Oct. 2008, pp. 1173–1176.
    [7] S. R. Pennock, M.A. Redfern, “Ultra Wideband antennas for in-pipe ground penetrating radar,” 2ed European Conference on Antennas and Propagation, pp. 1-5, 2007
    [8] Dimitrios E. Anagnostou, Matt Morton, John Papapolymerous, Christos G. Christodoulou, “A 0-55-GHz coplanar waveguide to coplanar strip transition,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 1-6, Jan. 2008.
    [9] S. G. Mao , C. T. Hwang , R. B. Wu and C. H. Chen “Analysis of coplanar waveguide-to-coplanar stripline transitions,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 23, Jan. 2000.
    [10] K. Lu, “An efficient method for analysis of arbitary nonuniform transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 9–14, Jan. 1997.
    [11] H. K. Kan, R. B. Waterhuse, A. M. Abbosh and M. E. Bialkowski, “Simple broadband planar CPW-fed quasi-Yagi Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 6, Apr. 2007.
    [12] John D. Kraus, Antennas, 2nd ed. McGraw-Hill, 1988.
    [13] G. Zheng, A. A. Kishk, A. W. Glisson and A. B. Yakovlev, “Simplified feed for modified printed Yagi antenna,” IET Electron. Lett., vol. 40, no. 8, Apr. 2004.
    [14] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Trans. Antennas Propag., vol. 52, no. 5, Apr. 2004.
    [15] K. M. K. H. Leong, Y. Qian and T. Itoh, “First demonstration of a conductor backed coplanar waveguide fed quasi-Yagi antenna,” in IEEE AP-S Int. Symp. Dig., July 2000, pp. 1432-1435.
    [16] Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” IET Electron. Lett., vol. 34, no. 23, Nov. 1998.
    [17] J. Sor, Y. Qian and T. Itoh, “Coplanar waveguide fed quasi-Yagi antenna,” IET Electron. Lett., vol. 26, no. 1, Jan. 2000.
    [18] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse and T. Itoh, “A broad-band planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, Apr. 2002.
    [19] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang “A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs” IEEE Electron Device Lett., vol. 31, no.11, pp. 1205-1207, Nov. 2010
    [20] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2108, Dec. 1996.
    [21] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-Impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.
    [22] F. Yang, and Y. Rahmat-Samii, “Reflection phase characterization of the EBG ground plane for low profile wire antenna application,” IEEE Trans. Antenna Propag., vol. 51, pp. 2691-2703, Oct. 2003.
    [23] C. A. Balanis, Advanced Engineering Eletromagnetics, John Wiley & Sons, 1989
    [24] H. Mosallaei, and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, Sep., 2004.
    [25] C. R. Simovski, P. de Maagt, and I. V. Melchakova, “High-impedance surface having stable resonance with respect to polarization incidence angle,” IEEE Trans. Antennas Propag., vol. 53, no. 3, Mar., 2005.
    [26] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, May, 2010.
    [27] A. E. I. Lamminen, A. R. Vimpari, and J. Saily, “UC-EBG on LTCC for 60-GHz frequency band antenna application,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct., 2009
    [28] R. J. Langley, , and A. J. Drinkwater, “An improved empirical model for the Jerusalem cross,” IEE Proc. H, Microwaves, Opt. & Antennas, vol. 129, pp. 1-6, Feb., 1982
    [29] M. K. T. Al-Nuaimi, and W. G. Whittow, “Low profile dipole antenna backed by isotropic Artificial Magnetic Conductor reflector,” European Conference on Antennas and Propagation, pp. 1-5, Apr., 2010.
    [30] H. Chu, Y. X. Guo, F. Lin, X. Q. Shi, “Wideband 60 GHz on-chip antenna with an artificical magnetic conductor,” Proc. IEEE Int. Symp. Radio-Frequency Integration Technology, pp. 307-310, 2009
    [31] R. N. Simons and R. Q. Lee, “On - Wafer Characterization of Millimeter - Wave Antennas for Wireless Applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
    [32] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip Antennas for 60-GHz Radios in Silicon Technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
    [33] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz Millimeter-Wave CPW-Fed Yagi–Antenna Fabricated Using 0.18-μm CMOS Technology,” IEEE Electron Device Lett., vol. 29, no. 6, pp 625-627, June 2008.
    [34] H. -R. Chuang, L. -K. Yeh, P. -C. Kuo, K. -H. Tasi and H. -L. Yue, “A 60-GHz millimeter-wave CMOS intrgrated on-chip antenna and bandpass filter,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1837-1845, Jul., 2011.
    [35] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Prentice Hall, 1996
    [36] C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitablefor nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw.Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
    [37] H. C. Liu, T. S. Horng and N. G. Alexopoulous, “Radiation of printedantennas with a coplanar waveguide feed,” IEEE Trans. Antennas Propag., vol. 10, pp. 1143-1148, Oct. 1995.
    [38] J. W. Greiser, “Coplanar stripline antenna,” Microwave Journal, vol. 21, pp. 47-49, 1976.
    [39] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems,New York: Wiley, 2001.
    [40] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Washington, 1996.
    [41] K. Tilley, X. - D. Wu and K. Chang, “Coplanar waveguide fed coplanar strip dipole antenna,” IET Electron. Lett., vol. 30, no. 3, Feb. 1994.
    [42] C. J. Panagamuwa, J. C. Vardaxoglou, “Optically reconfigurable balanced dipole antenna,” in Int. Conf. Antennas Propag., Apr. 2003, pp. 237 - 240.
    [43] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin line halfwave parallel-coupled line filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 719–728, Nov. 1972.
    [44] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2108, Dec. 1996.
    [45] G. L. Mattaei, N. O. Fenzi, R. Forse, and S. Rohlfing, “Narrow-band hairpin-comb filters for HTS and other applications,” IEEE MTT-S Dig., San Francisco, CA, pp. 457–460, June 1996.
    [46] J. S. Hong and M. J. Lancaster, “Theory and magnetically coupled open-loop resonator experiment of novel microstrip filters,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2358-2365, Dec. 1997.
    [47] S. Lee and C. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2482–2490, Dec. 2000.
    [48] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure,” IEEE Trans. Microwave Theory and Tech., pp. 2362~2367, Oct. 2002.
    [49] C. H. Wu, C. H. Wang, S. Y. Chen, and C. H. Chen, “Balanced-to-unbalanced bandpass filters and the antenna application,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, part 1, pp. 2474-2482, Nov. 2008.
    [50] M. -C. Huynh and W. Stutzman, “Ground plane effects on planar inverted-F antenna (PIFA) performance,” IEE Proc.- Microw. Antennas Propag., vol. 150, no. 4, Aug. 2003.
    [51] R. Gulertler, “Isotropoc transmission-line antenna and its toroid-pattern modification,” IEEE Trans. Antennas Propag., vol. 25, no. 3, pp. 386-392, May 1977.
    [52] K. Ogawa and T. Uwano, ”A diversity antenna for very small 800-MHz band portable telephones,” IEEE Trans. Antenna Propag., vol. 42, pp. 1342-1345, Sept. 1994.
    [53] P. Salonen, M. Keskilammi and M. Kivikoski, “Dual-band and wide-band PIFA with U- and Meanderline-shaped Slots,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 116-119, 2001.
    [54] Y. -S. Shin, B. -N. Kim, W. -I. Kwak, and S. -O. Park, “GSM/DCS/IMT-2000 triple-band built-in antenna for wireless terminals,” IEEE Antennas and Wireless Propagation Letters, vol. 3, pp.104-107, 2004.
    [55] C. W. Chiu and F. L. Lin, “Compact dual-band PIFA with multi-resonators,” IET Electronics Letters, vol. 38, no. 12, pp. 538-540, Jun. 2002.
    [56] F. Y. Zulkifli, M. D. Kurnaawan and E. T. Rahardjo, “Dual-band PIFA with U slot for WiMAX application,” 2009 Asia Pacific Microwave Conference, pp 2742-2745, 2009.
    [57] K. R. Boyle and L. P. Lighthart, “Radiating and balanced mode analysis of PIFA antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 231-237, Jan. 2006.
    [58] Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed. John Wiley and Sons Ltd, 2008.
    [59] D. M. Pozar, Microwave and RF Design of Wireless Systems, John Wiley and Sons Ltd, 2001.
    [60] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, John Wiley and Sons Ltd, 1999.
    [61] 蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,2010年7月。
    [62] K. K. O, K. Kim, B. A. Floyd, J. L. Mehta, H. Yoon, C.-M. Hung, D. Bravo, T. O. Dickson, X. Guo, R. Li, N. Trichy, J. Caserta, W. R. Bomstad, II, J. Branch, D.-J. Yang, J. Bohorquez, E. Seok, L. Gao, A. Sugavanam, J.-J. Lin, J. Chen, and J. E. Brewer, “On-chip antennas in silicon ICs and their application,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1312–1323, Jul. 2005.

    下載圖示 校內:2017-02-13公開
    校外:2017-02-13公開
    QR CODE