| 研究生: |
岳翰林 Yue, Han-Lin |
|---|---|
| 論文名稱: |
毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製 Research on Millimeter-Wave CMOS On-Chip Antennas and Artificial Magnetic Conductor (AMC) Antennas |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 毫米波 、CMOS 、射頻嵌入式天線 、人造磁導體天線 |
| 外文關鍵詞: | Millimeter-wave, CMOS, on-chip antenna, artificial magnetic conductor antenna |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計研製毫米波CMOS射頻晶片嵌入式天線,包含60-GHz CMOS摺合式偶極子天線及整合Yagi天線與非平衡轉平衡式帶通濾波器之射頻晶片、利用人造磁導體改善輻射效率之77 -GHz CMOS偶極子天線、及整合毫米波CMOS人造磁導體天線及非平衡轉平衡式帶通濾波器於60-GHz次諧波射頻前端接收機。60-GHz CMOS摺合式偶極子天線採用TSMC CMOS 0.18-μm製程,主要以改良傳統摺合式偶極子天線架構實現完成;60-GHz CMOS Yagi天線與非平衡轉平衡式帶通濾波器之整合晶片採TSMC CMOS 90-nm製程,彚整傳統Yagi天線並採電容性耦合縮小化的設計概念,並與非平衡轉平衡式帶通濾波器整合;利用人造磁導體改善輻射效率之77 -GHz CMOS偶極子天線採用TSMC CMOS 0.18-μm製程,以人造磁導體高阻抗特性減少電磁場進入高損耗基板,提高天線輻射效率(從5% 增加至15%)及功率增益。設計之天線訊號饋入系統皆以共面波導饋入方式完成設計。使用Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部份則採以on-wafer方式進行。
This thesis presents the design of millimeter-wave CMOS on-chip antennas, including a 60-GHz folded dipole antenna, a 60-GHz CMOS integrated Yagi-antenna and balun-filter, a 77-GHz dipole antenna using artificial magnetic conductor (AMC) to increase the radiation efficiency (from 5% to 15%), and a 60-GHz CMOS integrated on-chip AMC-antenna and balun-filter for a mm-wave sub-harmonic receiver RF front-end. The three-dimensional (3-D) EM simulator HFSS is used for design simulation. The on-chip antennas are fabricated with TSMC CMOS 0.18-μm and 90-nm process, respectively. The performances of the designed millimeter-wave CMOS on-chip antennas are all conducted by using the on-wafer measurement setup.
[1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
[5] C. A. Balanis, Antenna Theory and Design, 3rd ed. New York: Wiley, 2005
[6] K. Sekine, H. Iwasaki, “USB memory size antenna for 2.4 GHz wireless LAN and UWB,” in Proc. IEEE European Microw. Conf., Oct. 2008, pp. 1173–1176.
[7] S. R. Pennock, M.A. Redfern, “Ultra Wideband antennas for in-pipe ground penetrating radar,” 2ed European Conference on Antennas and Propagation, pp. 1-5, 2007
[8] Dimitrios E. Anagnostou, Matt Morton, John Papapolymerous, Christos G. Christodoulou, “A 0-55-GHz coplanar waveguide to coplanar strip transition,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 1-6, Jan. 2008.
[9] S. G. Mao , C. T. Hwang , R. B. Wu and C. H. Chen “Analysis of coplanar waveguide-to-coplanar stripline transitions,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 23, Jan. 2000.
[10] K. Lu, “An efficient method for analysis of arbitary nonuniform transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 9–14, Jan. 1997.
[11] H. K. Kan, R. B. Waterhuse, A. M. Abbosh and M. E. Bialkowski, “Simple broadband planar CPW-fed quasi-Yagi Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 6, Apr. 2007.
[12] John D. Kraus, Antennas, 2nd ed. McGraw-Hill, 1988.
[13] G. Zheng, A. A. Kishk, A. W. Glisson and A. B. Yakovlev, “Simplified feed for modified printed Yagi antenna,” IET Electron. Lett., vol. 40, no. 8, Apr. 2004.
[14] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Trans. Antennas Propag., vol. 52, no. 5, Apr. 2004.
[15] K. M. K. H. Leong, Y. Qian and T. Itoh, “First demonstration of a conductor backed coplanar waveguide fed quasi-Yagi antenna,” in IEEE AP-S Int. Symp. Dig., July 2000, pp. 1432-1435.
[16] Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” IET Electron. Lett., vol. 34, no. 23, Nov. 1998.
[17] J. Sor, Y. Qian and T. Itoh, “Coplanar waveguide fed quasi-Yagi antenna,” IET Electron. Lett., vol. 26, no. 1, Jan. 2000.
[18] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse and T. Itoh, “A broad-band planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, Apr. 2002.
[19] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang “A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs” IEEE Electron Device Lett., vol. 31, no.11, pp. 1205-1207, Nov. 2010
[20] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2108, Dec. 1996.
[21] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-Impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.
[22] F. Yang, and Y. Rahmat-Samii, “Reflection phase characterization of the EBG ground plane for low profile wire antenna application,” IEEE Trans. Antenna Propag., vol. 51, pp. 2691-2703, Oct. 2003.
[23] C. A. Balanis, Advanced Engineering Eletromagnetics, John Wiley & Sons, 1989
[24] H. Mosallaei, and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, Sep., 2004.
[25] C. R. Simovski, P. de Maagt, and I. V. Melchakova, “High-impedance surface having stable resonance with respect to polarization incidence angle,” IEEE Trans. Antennas Propag., vol. 53, no. 3, Mar., 2005.
[26] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, May, 2010.
[27] A. E. I. Lamminen, A. R. Vimpari, and J. Saily, “UC-EBG on LTCC for 60-GHz frequency band antenna application,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct., 2009
[28] R. J. Langley, , and A. J. Drinkwater, “An improved empirical model for the Jerusalem cross,” IEE Proc. H, Microwaves, Opt. & Antennas, vol. 129, pp. 1-6, Feb., 1982
[29] M. K. T. Al-Nuaimi, and W. G. Whittow, “Low profile dipole antenna backed by isotropic Artificial Magnetic Conductor reflector,” European Conference on Antennas and Propagation, pp. 1-5, Apr., 2010.
[30] H. Chu, Y. X. Guo, F. Lin, X. Q. Shi, “Wideband 60 GHz on-chip antenna with an artificical magnetic conductor,” Proc. IEEE Int. Symp. Radio-Frequency Integration Technology, pp. 307-310, 2009
[31] R. N. Simons and R. Q. Lee, “On - Wafer Characterization of Millimeter - Wave Antennas for Wireless Applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
[32] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip Antennas for 60-GHz Radios in Silicon Technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
[33] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz Millimeter-Wave CPW-Fed Yagi–Antenna Fabricated Using 0.18-μm CMOS Technology,” IEEE Electron Device Lett., vol. 29, no. 6, pp 625-627, June 2008.
[34] H. -R. Chuang, L. -K. Yeh, P. -C. Kuo, K. -H. Tasi and H. -L. Yue, “A 60-GHz millimeter-wave CMOS intrgrated on-chip antenna and bandpass filter,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1837-1845, Jul., 2011.
[35] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Prentice Hall, 1996
[36] C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitablefor nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw.Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
[37] H. C. Liu, T. S. Horng and N. G. Alexopoulous, “Radiation of printedantennas with a coplanar waveguide feed,” IEEE Trans. Antennas Propag., vol. 10, pp. 1143-1148, Oct. 1995.
[38] J. W. Greiser, “Coplanar stripline antenna,” Microwave Journal, vol. 21, pp. 47-49, 1976.
[39] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems,New York: Wiley, 2001.
[40] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Washington, 1996.
[41] K. Tilley, X. - D. Wu and K. Chang, “Coplanar waveguide fed coplanar strip dipole antenna,” IET Electron. Lett., vol. 30, no. 3, Feb. 1994.
[42] C. J. Panagamuwa, J. C. Vardaxoglou, “Optically reconfigurable balanced dipole antenna,” in Int. Conf. Antennas Propag., Apr. 2003, pp. 237 - 240.
[43] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin line halfwave parallel-coupled line filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 719–728, Nov. 1972.
[44] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2108, Dec. 1996.
[45] G. L. Mattaei, N. O. Fenzi, R. Forse, and S. Rohlfing, “Narrow-band hairpin-comb filters for HTS and other applications,” IEEE MTT-S Dig., San Francisco, CA, pp. 457–460, June 1996.
[46] J. S. Hong and M. J. Lancaster, “Theory and magnetically coupled open-loop resonator experiment of novel microstrip filters,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2358-2365, Dec. 1997.
[47] S. Lee and C. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2482–2490, Dec. 2000.
[48] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a zero-degree feed structure,” IEEE Trans. Microwave Theory and Tech., pp. 2362~2367, Oct. 2002.
[49] C. H. Wu, C. H. Wang, S. Y. Chen, and C. H. Chen, “Balanced-to-unbalanced bandpass filters and the antenna application,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, part 1, pp. 2474-2482, Nov. 2008.
[50] M. -C. Huynh and W. Stutzman, “Ground plane effects on planar inverted-F antenna (PIFA) performance,” IEE Proc.- Microw. Antennas Propag., vol. 150, no. 4, Aug. 2003.
[51] R. Gulertler, “Isotropoc transmission-line antenna and its toroid-pattern modification,” IEEE Trans. Antennas Propag., vol. 25, no. 3, pp. 386-392, May 1977.
[52] K. Ogawa and T. Uwano, ”A diversity antenna for very small 800-MHz band portable telephones,” IEEE Trans. Antenna Propag., vol. 42, pp. 1342-1345, Sept. 1994.
[53] P. Salonen, M. Keskilammi and M. Kivikoski, “Dual-band and wide-band PIFA with U- and Meanderline-shaped Slots,” IEEE Antennas and Propagation Society International Symposium, vol. 2, pp. 116-119, 2001.
[54] Y. -S. Shin, B. -N. Kim, W. -I. Kwak, and S. -O. Park, “GSM/DCS/IMT-2000 triple-band built-in antenna for wireless terminals,” IEEE Antennas and Wireless Propagation Letters, vol. 3, pp.104-107, 2004.
[55] C. W. Chiu and F. L. Lin, “Compact dual-band PIFA with multi-resonators,” IET Electronics Letters, vol. 38, no. 12, pp. 538-540, Jun. 2002.
[56] F. Y. Zulkifli, M. D. Kurnaawan and E. T. Rahardjo, “Dual-band PIFA with U slot for WiMAX application,” 2009 Asia Pacific Microwave Conference, pp 2742-2745, 2009.
[57] K. R. Boyle and L. P. Lighthart, “Radiating and balanced mode analysis of PIFA antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 231-237, Jan. 2006.
[58] Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed. John Wiley and Sons Ltd, 2008.
[59] D. M. Pozar, Microwave and RF Design of Wireless Systems, John Wiley and Sons Ltd, 2001.
[60] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, John Wiley and Sons Ltd, 1999.
[61] 蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,2010年7月。
[62] K. K. O, K. Kim, B. A. Floyd, J. L. Mehta, H. Yoon, C.-M. Hung, D. Bravo, T. O. Dickson, X. Guo, R. Li, N. Trichy, J. Caserta, W. R. Bomstad, II, J. Branch, D.-J. Yang, J. Bohorquez, E. Seok, L. Gao, A. Sugavanam, J.-J. Lin, J. Chen, and J. E. Brewer, “On-chip antennas in silicon ICs and their application,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1312–1323, Jul. 2005.