| 研究生: |
呂宜潔 Lu, Yi-Chieh |
|---|---|
| 論文名稱: |
不同颱風路徑對黑潮流場影響之研究 Study on Kuroshio Current Affected by Different Typhoon Tracks |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | TOROS 、POM 、Kuroshio 、颱風 |
| 外文關鍵詞: | TOROS data set, POM model, Kuroshio, Typhoon events |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用TOROS(Taiwan Ocean Radar Observing System)高頻雷達系統之遙測資料與POM(Princeton Ocean Model)數值模式模擬結果,分析三種不同颱風路徑的表面流場,探討颱風路徑和風場對流經臺灣東部海域黑潮的影響。
為掌握流場主要特性,本研究調整頻譜一階峰設定,有效框選颱風期間與表層海流有關的雷達回波訊號,並使用移動平均法調整受到電離層日夜變化干擾的TOROS資料,觀察颱風期間流場變化。並根據風場變化、Time-Stack流場圖、橫斷面平均流速與風速圖以及平面流場等方法,探討表層海流在颱風期間的變化。
本文分析結果整理如下:當颱風位於觀測區之東、東南與東北方,受颱風反氣旋形成向南之風場,造成向北的黑潮流速減弱;當颱風位於觀測區之西方,則形成向北風場,使流速增強;當颱風位於觀測區之南方,且颱風行進方向與黑潮同向,則形成向北風場,使流速增強,隨颱風接近流場增強又隨颱風遠離而流場減弱。
TOROS海流遙測資料受到雷達回波訊噪品質不穩定之影響,使得部分TOROS產出之表層海流流場不甚合理,造成颱風期間TOROS遙測資料與POM模式模擬兩者資料分析結果並非完全吻合,但整體而言趨勢上是一致且合理的。
TOROS (Taiwan Ocean Radar Observing System) High Frequency Radar (HRF) system data sets measured by the Taiwan Ocean Research Institute (TORI) and model simulations calculated by POM (Princeton Ocean Model) both are implemented to analyse Kuroshio current variation affected by different typhoon tracks. Three typhoon tracks, i.e. SOULIK, USAGI and KONG-RET, were investigated. Changed of current field during typhoon events were discussed.
To accurately capture key features of Kuroshio current, we first adjust the first- order setting for effectively grasp surface currents which are resolved from radar echo signals during typhoon events. The moving average method is also used to remove ionospheric disturbance of TOROS raw data and obtain reasonable results in terms of changes of flow field during typhoon attack to Taiwan Island.
The results of the analysis are summarized as follows. When typhoons come from southeast and northeast of the onset of study area (the margin of east continental self), which could cause southern wind field resulting in decrease of the Kuroshio current speed. On the contrary, when typhoons locate in the southeast and northeast of the study area, which could produce northern wind field leading to increase of the Kuroshio current speed. It is concluded that the Kuroshio current field depends on the typhoon wind field on the onset at the study area. It could enhance the Kuroshio current speed in the following direction, but reduce the speed in the opposite direction.
Numerical results obtained by POM show the same trend of changes for different typhoon tracks. The current of typhoons at different weaker depth was also studies. No significant change of Kuroshio current field at 100m water depth is found during SOULIK typhoon attack.
1. Barrick, D.E., Evans, M., Weber, B., 1977. Ocean surface currents mapped by radar. Science 198 (4313), 138-144.
2. Blumberg, A.F., Mellor, G.L., 1987. A description of a three-dimensional coastal ocean circulation model. Coastal and Estuarine Sciences 4, 1-16.
3. Chen, C.-T.A., Liu, C.-T., Chuang, W., Yang, Y., Shiah, F.-K., Tang, T., Chung, S., 2003. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. Journal of Marine Systems 42 (1), 65-79.
4. Crombie, D.D., 1955. Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175, 681-682.
5. Kawai, H., 1998. A brief history of recognition of the Kuroshio. Progress in Oceanography 41 (4), 505-578.
6. Liang, W.-D., Tang, T., Yang, Y., Ko, M., Chuang, W.-S., 2003. Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography 50 (6), 1085-1105.
7. Liu, C., 1986. Water masses in the Western Philippine Sea-physical aspects. Acta Oceanogr. Taiwan 17, 1-17.
8. Liu, K.K., Gong, G.C., Shyu, C.Z., Pai, S.C., Wei, C.L., Chao, S.Y., 1992. Response of Kuroshio upwelling to the onset of the northeast monsoon in the sea north of Taiwan: Observations and a numerical simulation. Journal of Geophysical Research: Oceans (1978–2012) 97 (C8), 12511-12526.
9. Madala, R.V., Piacseki, S.A., 1977. A semi-implicit numerical model for baroclinic oceans. Journal of Computational Physics 23 (2), 167-178.
10. Mellor, G.L., 2003. Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ 08544-0710.
11. Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics 20 (4), 851-875.
12. Morimoto, A., Kojima, S., Jan, S., Takahashi, D., 2009. Movement of the Kuroshio axis to the northeast shelf of Taiwan during typhoon events. Estuarine, Coastal and Shelf Science 82 (3), 547-552.
13. Nitani, H., 1972. Beginning of the Kuroshio. Kuroshio, its physical aspects, 129-163.
14. Oey, L.-Y., Mellor, G.L., Hires, R.I., 1985a. A three-dimensional simulation of the Hudson-Raritan estuary. Part I: Description of the model and model simulations. Journal of physical oceanography 15 (12), 1676-1692.
15. Oey, L.-Y., Mellor, G.L., Hires, R.I., 1985b. A three-dimensional simulation of the Hudson-Raritan estuary. Part II: Comparison with observation. Journal of physical oceanography 15 (12), 1693-1709.
16. Qiu, B., Lukas, R., 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research: Oceans (1978–2012) 101 (C5), 12315-12330.
17. Qu, T., Mitsudera, H., Yamagata, T., 1998. On the western boundary currents in the Philippine Sea. Journal of Geophysical Research: Oceans (1978–2012) 103 (C4), 7537-7548.
18. Sastri, J.H., 1988. Equatorial electric-fields of ionospheric disturbance dynamo orgin, Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, pp. 635-642.
19. Simons, T.J., 1974. Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. Journal of physical oceanography 4 (4), 507-523.
20. Smagorinsky, J., Manabe, S., Holloway Jr, J.L., 1965. NUMERICAL RESULTS FROM A NINE-LEVEL GENERAL CIRCULATION MODEL OF THE ATMOSPHERE 1. Monthly Weather Review 93 (12), 727-768.
21. Sun, X.-P., 1987. Analysis of the surface path of the Kuroshio in the East China Sea. Essays on the Investigation of Kuroshio, 1-14.
22. Wu, C.R., Hsin, Y.C., 2012. The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. Journal of Geophysical Research: Oceans (1978–2012) 117 (C7).
23. Wyrtki, K., 1961. Physical oceanography of the southeast Asian waters. Scripps Institution of Oceanography
24. Yaremchuk, M., Qu, T., 2004. Seasonal variability of the large-scale currents near the coast of the Philippines. Journal of physical oceanography 34 (4).
25. TORI, http://med.tori.org.tw/TOROS/
26. NASA, http://www.nasa.gov/
27. 中央氣象局,http://www.cwb.gov.tw/
28. 姜成翰(2012),「黑潮中CODAR觀測之檢驗與修正」,國立台灣海洋大學海洋環境資訊研究所碩士論文。
29. 廖建明、許泰文、石棟鑫、杜佳穎、陳俊文、莊文傑(2010),「POM海洋數值模式應用於台灣鄰近海域之洋流模擬」,交通部運硏所。
30. 廖建明、許朝敏、莊文傑(2013),「臺灣環島近岸海域大尺度海流引致之輸沙潛勢評估」,交通部運輸研究所。
31. 魏宏儒(2013),「台灣東北角海域之近岸高頻測流雷達資料初步分析」,國立中山大學海下科技暨應用海洋物理研究所碩士論文。