簡易檢索 / 詳目顯示

研究生: 林延灃
Lin, Yen-feng
論文名稱: 點帶石斑魚幾丁質酶基因及起動子的選殖及其在生長發育時期之表現
Molecular cloning of chitinase genes and promoters and the expression analysis in larval stage of orange-spotted grouper (Epinephelus coioides)
指導教授: 林翰佑
Lin, Han-you
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 幾丁質酶幾丁質點帶石斑魚
外文關鍵詞: chitinase, Epinephelus coioides, chitin
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾丁質酶 (EC 3.2.1.14) 為可分解幾丁質的一種醣類水解酶,先前實驗室已成功的在性喜以甲殼類為食的點帶石斑魚 (Epinephelus coioides) 的胃中選殖到兩個幾丁質酶基因,分別命名為幾丁質酶一及幾丁質酶二,並且發現此兩幾丁質酶可能與點帶石斑消化富含幾丁質之食物有關。本篇論文將就現有研究基礎進行更進一步的探討,本研究中將分為四大部分,分別針對 (一) 幾丁質酶基因結構分析、 (二) 幾丁質酶胺基酸序列演化樹建構、 (三) 幾丁質酶在魚苗發育階段的表現情形、 (四) 幾丁質酶基因表現的調控機制等進行探討。在研究中可發現到幾丁質酶一及幾丁酶二基因體去氧核醣核酸序列均是由11個外顯子及10個內插子所組成,但在序列全長上幾丁質酶二較幾丁質酶一長;在演化樹的建構分析上則可發現兩者均可歸類至脊椎動物幾丁質酶中的酸性幾丁質酶,但兩者在演化上則分屬於兩個不同支系;而在魚苗幾丁質酶基因表現分析實驗中則發現,當魚苗發育至第30~33天時,魚苗幾丁質酶基因表現量會有顯著性的增加;最後透過幾丁酶基因啟動子區域序列的選殖分析,則可發現到與脊椎動物胃蛋白酶基因表現調控有關的轉錄因子的鍵結區的存在,如:AML-1a、GATA-1、AP-1、IK-2等。從以上實驗可得知,點帶石斑魚的幾丁質酶一及二,可能均有與脊椎動物胃中消化酶相似的分子調控路徑,且兩者在魚苗發育中的表現情形也十分類似,但從演化樹的結果分析則可發現兩者分屬於不同支系,或許代表著兩者雖同在胃中表現且均與消化相關,但卻可能具有不同的生理意義。

    Chitinase (EC 3.2.1.14) is a kind of glycosyl hydrolase which can hydrolysis chitin. Two chitinase genes (chitinase 1 and chitinase 2) have been cloned from the stomach of orange-spotted grouper (Epinephelus coioides). It is found that the chitinase was participating in the food digestions that contain the chitin in ingredient. In this study, four topics based on the previous data will be further discussing. The first is cloning the chitinase genomic DNA sequence. Second is to construct the phylogenetic tree of vertebrate chitinases. Third is to investigate the chitinase genes expression in the different development stages of the larvae. Fourth is to know the molecular mechanisms about the regulation of the chitinase genes expression. In the results, it could be found both of chitinase 1 and chtinase 2 are composed of 11 exons and 10 introns. Nevertheless, the whole length of chitinase 2 genomic DNA is much longer than chitinase 1. And in the phylogenetic tree, both of chitinase 1 and chitinase 2 are belong to the acidic chitinase of vertebrate chitinases, but they are in the different branches. Besides, by the analysis of chitinase genes expression in fish larvae, the genes are expressed significantly since 30~33 dpf (day post fertilization). Finally, through the cloning of chitinase genes promoter regions, both of them have the same transcription factors binding sites in the promoter region like the vertebrate pepsinogens. For example, the binding sites of AML-1a, GATA-1, AP-1 and IK-2. To make a summary of this study, the gene expression of chitinase 1 and chitinase 2 have the similar molecular regulatory way like the digestive enzyme in the stomach of vertebrate. In the fish larvae, the gene expression patterns of the two chitinases are similar. But in the phylogenetic tree, chitinase 1 and chitinase 2 are in the different groups. It may drop a hint, even though both chitinase 1 and chitinase 2 are expressed in stomach and have the same function about food digestion, but they may still have some different roles in physiology.

    中文摘要…………………………………………………………………….I 英文摘要……………………………………………………………………III 目錄…………………………………………………………………………IV 圖目錄………………………………………………………………………VI 表目錄……………………………………………………………………VIII 壹、 研究目的………………………………...…………………………….1 貳、 研究背景 一、 點帶石斑魚 (Epinephelus coioides)……………………………2 1-1 物種分類 1-2 棲所生態 1-3 經濟價值 二、 幾丁質 (Chitin)………………………………………………….3 2-1 幾丁質的結構 2-2 幾丁質的分佈 2-3 幾丁質的應用 三、 幾丁質酶 (Chitinase)……………………………………………6 3-1 酵素分類 3-2 幾丁質酶分佈與功能 3-3 幾丁質酶的結構 3-4 幾丁質酶的應用 四、 幾丁質酶於魚類的研究………………………………………….9 參、 實驗材料與方法…………………………………………..………….11 肆、 實驗結果……………………………………………………….…….24 伍、 討論………………………………………………….……………….29 陸、 文獻………………………………………………………………….38 柒、 圖表…………………………………………………………….…….44

    中華民國水產種苗協會(FBA) http://www.fish.org.tw/chinese/ Orange-spotted%20grouper.html
    邵廣昭 台灣魚類資料庫 網路電子版 version 2009/1 http://fishdb.sinica.edu.tw, (2009-6-24)
    曹鳳儒 (2007),點帶石斑幾丁質酶純化、功能分析及基因選殖,國立成功大學生物科技研究所碩士論文
    Aronson N.N., Blanchard C.J., Madura J.D., (1997), Homology modeling of glycosyl hydrolase family 18 enzymes and proteins., J. Chem. Inf. Comput. Sci., 37 (6): 999-1005
    Aronson N.N. and Halloran B.A., (2006), Optimum substrate size and specific anomer requirements for the reducing-end glycoside hydrolase di-N-acetylchitobiase., Biosci. Biotechnol. Biochem., 70 (6): 1537-41
    Bernasconi P., Jollès P., Pilet P.E., (1986) Purification of large amounts of lysozyme with chitinase activity from Rubus hispidus cultured in vitro, in: Chitin in Nature and Technology, pp.234-6, Pienum Press, New York
    Boot R.G., Blommaart E.F., et al., (2001), Identification of a novel acidic mammalian chitinase distinct from chitotriosidase., J. Biol. Chem., 276 (9): 6770-8
    Boot R.G., Bussink A.P., et al., (2005), Marked differences in tissue-specific expression of chitinases in mouse and man., J. Histochem. Cytochem., 53 (10): 1283-92
    Buhi W.C., Alvarez I.M., et al., (1996), Molecular cloning and characterization of an estrogen-dependent porcine oviductal secretory glycoprotein., Biol. Reprod., 55 (6): 1305-14
    Bussink A.P., Speijer D., et al., (2007), Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases., Genetics, 177 (2): 959–70
    Carninci P., Kasukawa T., et al., (2005), The transcriptional landscape of the mammalian genome., Science, 309 (5740): 1559-63
    Chatterjee R., Batra J., et al., (2008), Genetic association of acidic mammalian chitinase with atopic asthma and serum total IgE levels., J. Allergy. Clin. Immunol., 122 (1): 202-8
    Cornelius C. and Dandrifosse G., (1977), Substract specificity of the β (1->4) -N-acetylglucosaminidase of vertebrate., Biochem. Syst. Ecol., 5: 5356
    Dahiya N., Tewari R., et al., (2005), Production of an antifungal chitinase from Enterobacter sp. NRG4 and its application in protoplast production. World J. Microbiol. Biotechnol., 21: 1611-6
    Daley D., Lemire E., et al., (2009), Analyses of associations with asthma in four asthma population samples from Canada and Australia., Hum. Genet., 125 (4): 445-59
    Fang R., Lundblad G., et al., (1979), Chitinolytic enzymes in the digestive system of marine fishes., Marine Biology, 53: 317-21
    Feng S.Z., Li W.S., Lin H.R., (2008), Identification and expression characterization of pepsinogen A in orange-spotted grouper, Epinephelus coioides., J. Fish Biol., 73: 1960-78
    Fisher K.J. and Aronson N.N. Jr., (1992), Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N- acetylchitobiase., J. Biol. Chem., 267 (27): 19607-16
    Flach J., Pilet P.E., Jollès P., (1992), What’s new in chitinase research? Experientia, 48 (8): 701-16
    Fujita K., Shimomura K., et al., (2006), A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem. Biophys. Res. Commum., 345 (1): 502-7
    Gorbach V.I., Krasikova I.N., et al., (1994), New glycolipids (chitooligosaccharide derivatives) possessing immunostimulating and antitumor activities., Carbohydr. Res., 260 (1): 73-82
    Goto M., Fujimoto W., et al., (2003), Immunohistochemical demonstraction of acidic mammalian chitinase in the mouse salivary gland and gastric mucosa., Arch. Oral. Biol., 48 (10): 701-7
    Gutowska M.A., Drazen J.C., Robison B.H., (2004), Digestive chitinolytic activity in marine fishes of Monterey Bay, California., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 139 (3): 351-8
    Henrissat B., (1991), A classification of glycosyl hydrolase based on amino acid sequence similarities., Biochem. J., 280 (Pt 2): 309-16
    Hirono I., Yamashita M., Aoki T., (1998), Note: molecular cloning of chitinase genes from Vibrio anguillarum and V. parahaemolyticus., J. Appl. Microbiol., 84 (6): 1175-8
    Knorr D., (1991), Recovery and utilization of chitin and chitosan in food processing waste management., Food Technol., 45 (11): 114-23
    Kubota T., Miyamoto K., et al., (2004), Molecular characterization of an intracellular neta-N-acetylglucos -aminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520., Biosci. Biotechnol. Biochem., 68 (6): 1306-14
    Kurokawa T., Uji S., Suzuki T., (2004), Molecuar cloning of multiple chitinase genes in Japanese flounder, Paralichthys olivaceus., Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 138 (3): 255-64
    Liu X., Li-Ling J., et al., (2009), Identification and characterization of a chitinase-coding gene from Lamprey (Lampetra japonica) with a role in gonadal development and innate immunity., Dev. Comp. Immunol., 33 (2): 257-63
    Lonhienne T., Mavromatis K., et al., (2001), Cloning, sequences, and characterization of two chitinase genes from the Antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes., J. Bacteriol., 183 (5): 1773-9
    Lu Y., Zen K.C., et al., (2002), Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase., Insect Biochem. Mol. Biol., 32 (11): 1369-82
    Marsh R.S., Moe C., et al., (2001), Characterization of gastrointestinal chitinase in the lizard Sceloporus undulatus garmani (Reptilia: Phrynosomatidae)., Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 128 (4): 675-82
    Meng G., Bai X., et al., (2009), Crystallization and preliminary X-ray crystallographic studies on SI-CLP, a novel human Glyco_18 domain-containing protein., Protein Pept. Lett., 16 (3): 336-8
    Kumar M. N. V. R., (2000), A review of chitin and chitosan applications. React. Funct. Polym., 46: 1-27
    Meijerink P.H., Bebelman J.P., et al., (1991), Analysis of the promoter of a human pepsinogen A gene., Adv. Exp. Med. Biol., 306: 87-90
    Meijerink P.H., Bebelman J.P., et al., (1993), Gastric chief cell-specific transcription of the pepsinogen A gene. Eur. J. Biochem., 213(3): 1283-96
    Minke R. and Blackwell J., (1978), The structure of alpha-chitin., J. Mol. Biol., 120: 167-81
    Muzzarelli R.A.A., Weckx M., Fillipini O., (1989), Removal of trace metal ions from industrial waters, nuclear effluents and drinking water, with the aid of cross-linked N-carboxymethyl chitosan., Carbohydr. Polym., 11: 2013-3061
    Nicol S., (1991), Life after death for empty shells., New Scientist., 129: 46-8
    Oh J.H., Yang J.O., et al., (2005), Transcriptome analysis of human gastric cancer., Mamm. Gemnome, 16 (12): 942-54
    Ohishi K., Murase k., et al., (2000), Cloning and sequencing of a chitinase gene from Vibrio alginolyticus H-8., J. Biosci. Bioeng., 89 (5): 501-5
    Ohno T., Armand S., et al., (1996), A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037., J. Bacteriol., 178 (17): 5065-70
    Oranusi N.A. and Trinci A.P., (1985), Growth of bacteria on chitin, fungal cell walls and fungal biomass, and the effect of extracellular enzymes produced by these cultures on the antifungal activity of amphotericin B. , Microbios, 43 (172): 17-30
    Oshima H., Miyazaki R., et al., (2002), Isolation and sequence of a novel amphibian pancreatic chitinase., Comp. Biochem. Physiol., 132 (2): 381-8
    Pearlmutter N.L. and Lembi C.A., (1978), Localization of chitin in algal and fungal cell walls by light and electron microscopy., J. Histochem. Cytochem., 26: 782-91
    Pedraza-Reyes M., and Lopez-Romero E., (1989), Purification and some properties of two forms of chitinase from mycelial cells of Mucor rouxii., J. Gen. Microbiol., 135: 211-8
    Pemberton J.M., Kidd S.P., Schmidt R., (1997), Secreted enzymes of Aeromonas., FEMS. Microbiol. Lett., 152: 1-10
    Perrakis A., Tews I., et al., (1994), Crystal structure of a bacterial chitinase at 2.3 A resolution., Structure, 2 (12): 1169-80
    Rinaudo M. and Domard A., (1989), Solution properties of chitosan, in Chitin and Chitosan, Break C.J., Sandford P.A., Zikakis J.P. (Eds), Elsevier Applied Science, London, pp.71-6
    Rogers A.J., Raby B.A., et al., (2009), Assessing the reproducibility of asthma candidate gene associations, using genome-wide data., Am. J. Respir. Crit. Care Med., 179 (12): 1084-90
    Rose A.B., (2008), Intron-mediated regulation of gene expression., Curr. Top. Microbiol. Immunol., 326: 277-90
    Rudall K.M. and Kenching W., (1973), Chitin system., Biol. Rev. Camb. Philos. Soc., 48 (4): 597
    Sakuda S., Isogai A., et al., (1987), Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor., J. Antibiot., 40 (3): 296-300
    Samuels T.L., Handler E., et al., (2008), Mucin gene expression in human laryngeal epithelia: effect of laryngopharyngeal reflux., Ann. Otol. Rhinol. Laryngol., 117 (9): 688-95
    Seibold M.A., Donnelly S., et al., (2008), Chitotriosidase is the primary active chitinase in the human lung and is modulated by genotype and smoking habit., J. Allergy Clin. Immunol., 122 (5): 944-50
    Sendai Y., Komiya H., et al., (1995), Molecular cloning and characterization of a mouse oviduct-specific glycoprotein., Biol. Reprod., 53 (2): 285-94
    Strausberg R.L., Feingold E.A., et al., (2002), Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences., Proc. Natl. Acad. Sci. U.S.A., 99 (26): 16899-903
    Suzuki M., Fujimoto W., et al., (2002), Cellular expression of gut chitinase mRNA in the gastrointestinal tract of mice and chickens., J. Histochem. Cytochem., 50 (8): 1081-9
    Suzuki M., Morimatsu M., et al., (2001), A novel serum chitinase that is expressed in bovine liver., FEBS lett., 506 (2): 127-30
    Suzuki K., Taitoji M., et al., (1999), The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases., Biochem. J., 343 (Pt3): 587-96
    Suzuki K., Mikami T., et al., (1986a), Antitumor effect of hexa-N- acetylchitohexaose and chitohexaose., Carbohydr. Res., 151: 403-8
    Suzuki K., Tokoro A., et al., (1986b), Effect of N-acetylchito-oligosaccharides on activation of phagocytes., Microbiol. Immunol., 30: 777-87
    Taira T., Ohnuma T., et al., (2002), Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell wall., Biosci. Biotechnol. Biochem., 66: 970-7
    Terwisscha van Scheltinga A.C., Kalk K.H., et al., (1994), Crystal structure of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure, 2 (12): 1181-9
    Tharanathan R.N. and Kittur F.S., (2003), Chitin--the undisputed biomolecule of great potential., Crit. Rev. Food Sci. Nutr., 43 (1): 61-87
    Tokoro A., Tatewaki N., et al., (1988), Growth-inhibitory effect of hexa-N- acetylchitohexaose and chitohexaose against Meth-A solid tumor., Chem. Pharm. Bull., 36: 784-90
    Verhage H.G., Fazleabas A.T., et al., (1997) The baboon oviduct: characteristics of an oestradiol-dependent oviduct-specific glycoprotein., Hum. Reprod. Update., 3 (6): 541-52
    Villagomez-Castro J.C., and Lopez-Romero E., (1996), Identification and partial characterization of three chitinase forms in Entamoeba invadens with emphasis on their inhibition by allosamidin., Antonie Van Leeuwenhoek, 70 (1): 41-8
    Wang S.L. and Chang W.T., (1997), Purification and characterization of two bifunctional chitinase/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium., Appl. Environ. Microbiol., 63 (2): 380-6
    Wang F., Wang J., et al., (2008), Environmental adaptation genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3., PLoS ONE, 3 (5) doi:10.1371
    Watanabe T., Kobori K., et al., (1993), Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity., J. Biol. Chem., 268 (25): 18567-72
    Wiwat C., Thepouyporn A., et al., (2002), Cloning, sequencing, and expression of a chitinase-encoding gene from Bacillus circulans NO. 4.1., Curr. Microbiol., 44 (3): 167-72
    Yalpani M., Johnson F., Rotinson L.E., (1992), Adv. Chitin and Chitosan, Brine C.J., Sandford P.A., Zikakis J.P. (Eds) Elsevier Applied Science, London, pp.543
    Ying S.Y. and Lin S.L., (2009), Intron-mediated RNA interference and microRNA biogenesis. Methods., Mol. Biol., 487: 387-413
    Zambonino Infante J.L. and Cahu C.L., (2001), Ontogeny of the gastrointestinal tract of marine fish larvae., Comp. Biochem. Physiol. C Toxicol. Pharmacol., 130 (4): 477-87
    Zheng Y., Zheng S., et al., (2002), A molt-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana., Insect Biochem. Mol. Biol., 32 (12): 1813-23
    Zhu Q., Arakane Y., et al., (2008), Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects., Insect Biochem. Mol. Biol., 38 (4): 452-66

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE