簡易檢索 / 詳目顯示

研究生: 劉彥岑
Liu, Yen-Chen
論文名稱: 偶氮苯液晶、聚合物單體及向列型液晶混合物之光電特性研究
Studies of electro-optical characteristics of the mixtures based on azobenzene liquid crystal, monomer and liquid crystal
指導教授: 傅永貴
Fuh, Ying-Guey
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 偶氮苯液晶聚合物單體向列型液晶光引致同分異構化光致熱效應
外文關鍵詞: azobenzene liquid crystal, monomer, nematic liquid crystal, photo-isomerization, Light-Induced Thermal Effect
相關次數: 點閱:96下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究偶氮苯液晶、向列型液晶及聚合物單體混合物之光電特性,並利用此混合物製作一以紫外光寫入且無需偏振片之液晶顯示元件。該元件可利用偶氮苯液晶的兩種同分異構物(trans-態及cis-態)之不同吸收頻譜,及聚合物單體(DPPA)之高黏滯係數性質,使樣品於散射態及穿透態間切換,達到利用不同波段的光進行圖樣寫入及抹除之效果。本論文提出方法相當簡單,且寫入及抹除圖樣之光源無須偏振態。在圖樣寫入方面,選擇trans-態吸收率高於cis-態之波長(365 nm)光源,而抹除圖樣則採用cis-態吸收率高於trans-態的波長(532 nm)光源。由實驗可知樣品寫入或抹除所需時間與照射光源強度有關,光源強度越強則所需時間越短。另外可利用固定強度之光源照射樣品不同時間,則可得到不同穿透程度,亦即達到顯示灰階效果。此外,所寫入之圖樣對比經實驗測量為105:1,且利用此方法寫入之圖樣具有穩態,論文中將有詳細的驗證及機制說明。有關圖樣抹除方面,除上述利用光抹除的方法外,由於所使用之材料於高溫環境下的相變,及偶氮苯液晶於cis-態加熱後會轉變為trans-態的性質,故亦可利用熱將所寫入之圖樣進行抹除,且圖樣經光或熱抹除後的液晶樣品亦可重複寫入新的圖樣。

    This thesis reports the results obtained from the studies of electro-optical characteristics of the mixtures based on azobenzene liquid crystal, nematic liquid crystal and monomer. The mixtures are adopted to fabricate an optically addressable and polarizer-free liquid crystal display. Because of the different absorption spectra between the trans- and cis-isomer of azobenzene liquid crystal, and the high viscosity of the used DPPA monomers, this LC device can be switched between scattering and transparent modes using different-wavelength light. The approach to address and erase the pattern is very simple. In the part of addressing (erasing) patterns, UV (green) light is used as the light source since the absorbance of UV light by trans-isomer (cis-isomer) is higher than that by cis-isomer (trans-isomer). Experimentally, the required duration to address and erase a display is found to decrease with the increase of the used light source. Additionally, the display gray scale can be achieved by the variation of illumination duration of UV light. The maximum contrast ratio is measured to be around 105. It should be noted that the written patterns are permanent after the light source is blocked. Restated, this display device is multi-stable. Moreover, in addition to the optically erased patterns, the addressed patterns can be erased by thermal treatment as well. The optically or thermally treated sample is optically rewritable. The detailed experimental results will be demonstrated and discussed in the thesis.

    摘要 I Abstract II 目錄 III 圖表目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 導讀 2 第二章 液晶簡介 4 2.1 定義 4 2.2 液晶分類方式 5 2.2.1 向列型液晶(Nematics, 簡稱N) 6 2.2.2 膽固醇型液晶(Cholesterics, 簡稱N*) 7 2.2.3 層列型液晶(Smectics, 簡稱Sm) 10 2.2.4 圓盤狀(Disc-like)液晶 14 2.3 液晶材料特性 15 2.3.1 秩序參數(order parameter, S) 16 2.3.2 光學異向性(雙折射性) 18 2.3.3 溫度對液晶雙折射率的影響 21 2.3.4 介電常數異向性 22 2.3.5 Fréedericksz Transition 25 2.3.6 連續彈性體理論 26 第三章 相關理論 28 3.1 液晶-聚合物混合薄膜 28 3.1.1 PDLCs的製造 28 3.1.2 PDLCs的光電特性 29 3.2 光引致同分異構化(photo-isomerization) 33 3.3 光致熱效應 (Light-Induced Thermal Effect) 35 3.4 膠體(colloid) 36 3.4.1 溶膠的光學性質 38 3.4.2 溶膠之動力學性質 40 3.4.3 溶膠的穩定機制 42 3.5 黏滯係數(viscosity)的變化參數 43 3.6 聚合物(polymer)特性及單體聚合行為 44 第四章 實驗備製及說明 46 4.1 樣品備製 46 4.1.1 材料介紹 46 4.1.2 樣品製作流程 52 4.2 實驗架設 56 4.2.1 樣品照射UV雷射之穿透度動態量測 56 4.2.2 樣品照射DPSS雷射之穿透度動態量測 58 4.2.3 驗證偶氮苯液晶在紫外波長區域的高強度吸收率 59 4.2.4 偶氮苯液晶的相互吸引作用 60 4.2.5 穿透程度變化 61 4.2.6 樣品對比 63 第五章 結果與分析 64 5.1 實驗原理 64 5.2 偶氮苯液晶及K15混合形成膠體結構 65 5.3 偶氮苯液晶在紫外波長的高強度吸收率及其對單體影響 66 5.3.1 偶氮苯液晶在紫外波長區域的高吸收率 67 5.3.2 聚合物單體因偶氮苯液晶的高吸收率而無法聚合 67 5.4 偶氮苯液晶間之相互聚集作用 68 5.5 樣品的散射機制 69 5.6 樣品照射UV雷射之穿透度動態量測分析 71 5.7 穿透區域之觀察 72 5.8 穿透率隨時間變化 75 5.9 樣品照射DPSS雷射之穿透度動態量測分析 77 5.10 照射DPSS雷射與散射體尺寸 79 5.11 快速降溫 83 5.12 元件之灰階顯示效果 84 5.13 重複寫入及抹除圖樣 85 第六章 總結與未來展望 90 6.1 結論 90 6.2 未來展望 92 參考文獻(References) 94

    [1] W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, Nature 351, 49 (1991)
    [2] H. K. Lee, A. Kanazawa, T. Shiono and T. Ikeda, Chem. Mater. 10, 5 (1998)
    [3] J. H. Liu and H. Y. Wang, Journal of Applied Polymer Science 91, 789 (2004)
    [4] T. H. Lin, Y. Huang, Y. Zhou, Andy Y. G. Fuh and S. T. Wu, Opt. Express 14, 4479 (2006)
    [5] H. Yoshida, C. H. Lee, Y. Miura, A. Fujii and M. Ozaki, Appl. Phys. Lett. 90, 071107 (2007)
    [6] S. Kurihara, S. Nomiyama and T.Nonaka, Proc. SPIE, 4107 (2000)
    [7] S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata and T. Nonaka, Appl. Phys. Lett. 88, 103121 (2006)
    [8] A. G. Chen and D. J. Brady, Opt. Lett. 17, 441 (1992)
    [9] T. V. Gastyan, V. Drnoyan and S.M. Arakelian, Phys. Lett. A, 217, 52 (1996)
    [10] F. Simoni, O. Francescangeli, Y. Reznikov and S. Slussarenko, Opt. Lett. 22, 549 (1997)
    [11] U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, Mol. Cryst. Liq. Cryst. 454, 235 (2006)
    [12] 液晶應用技術研究會 編著, “最新液晶應用技術”, 建興出版社, (1997)
    [13] 顧鴻壽 編著, “光電液晶平面顯示器-第二版”, 新文京開發出版社, (2004)
    [14] 松本正一、角田市良 編著, 劉瑞祥 譯, 液晶之基礎與應用,國立編譯館出版, (1996)
    [15] Peter J. Collings and Michael Hird, “Introduction to Liquid Crystals Chemistry and Physics”, Taylor & Francis Ltd, Hampshire, (1997)
    [16] D. Statman, E. Page, V. Werner and J. C. Lombardi, Phys. Rev. E 75, 021703 (2007)
    [17] C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu and Andy Y.-G. Fuh, Appl. Phys. Lett. 83, 4285(2003)
    [18] O. Francescangeli, S. Slussarenko and F. Simoni, Phys. Rev. Lett. 82, 1855-1858 (1999)
    [19] F. Reintzer, Monatsh. Chem. 9, 421(1888)
    [20] Letter from F. Reintzer to O. Lehmann, reported by H. Keller, Mol. Cryst. Liq. Cryst. 21, 1(1973)
    [21] R. Hochgesand, H. J. Plach, and I. C. Sage, “Helical Twisting Power of Chiral Dopants in Nematic Liquid Crystals”, technical report by E. Merck and BDH Chemicals Ltd. (1989)
    [22] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals”, Oxford University Press, New York, (1993)
    [23] A. Yariv, “Optical Electronics in Modern Communications” ,Oxford University Press, New York, (1997)
    [24] A. Yariv, “Quantum Electronics”, Wiley, New York, (1988)
    [25] J. G. and H. C., Appl. Phys, Lett. 93, 201901 (2008)
    [26] N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)
    [27] I. C. Khoo and S. T. Wu, “Optics and Nonlinear Optics of Liquid Crystals ”, World Scientific, Singapore, (1993)
    [28] M. Marinelli and F. Mercuri, Phys. Rev. E 61, 1616(2000)28
    [29] 朱自強, 王仕璠, 蘇顯渝 編著, 現代光學教程, 四川大學出版社, 成都, (1990)
    [30] Jun Li, Sebastian Gauza, and Shin-Tson Wu, J. Appl. Phys. 96, 19(2004)
    [31] Andy Y.-G. Fuh, M.-S. Tsai, L.-J. Huang and T.-C. Liu, Appl. Phys. Lett. 74, 2572 (1999)
    [32] Andy Y.-G. Fuh, C.-R. Lee and K.-T. Cheng, Jpn. J. Appl. Phys. 42, 4406 (2003)
    [33] P. S. Drzaic, “Liquid Crystal Dispersions”, World Scientific Press, Singarpore, (1990)
    [34] V. G. Chigrinov, “Liquid crystal devices-Physics and Applications 1st ed”, Artech House, (1999)
    [35] T. V. Galstyan, B. Saad and M. M. Denariez-Roberge, J. Chem. Phys. 22, 9319(1997)
    [36] D. V. Robert and J. V. Marjorie, “Colloid and interface chemistry”, Addison-Wesley, (1983)
    [37] Ranella J. Hirsch, Vic Narurkar and Jean Carruthers, Lasers in Surgery and Medicine 38, 202(2006)
    [38] Karlin S. and Taylor H. M. , A First Course in Stochastic Processes 2nd ed. , Academic Press, New York, (1975)
    [39] Maginn S. J., Bullock J. F. and Docherty R. , Dyes Pigm. 23, 159 (1993)
    [40] Kendrick K. L. and Gilkerson W R, J. Solut. Chem. 16, 257 (1987)
    [41] Tawarah K. M. and Wazwaz A. A. , Dyes Pigm. 21, 97 (1993)
    [42] U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan and T. J. Bunning, Opt. Express 15, 9273 (2007)
    [43] U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan and T. J. Bunning, Adv. Funct. Mater. 17, 1735 (2007)

    下載圖示 校內:2013-08-03公開
    校外:2015-08-03公開
    QR CODE