| 研究生: |
王昱琪 Wang, Yu-Chi |
|---|---|
| 論文名稱: |
由指定特徵根決定參數之整合性非線性動力反算控制法 A Unified Approach to Nonlinear Dynamic Inversion Control with Parameter Determination by Eigenvalue Assignment |
| 指導教授: |
許棟龍
Sheu, Donglong 林清一 Lin, Chin E. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 非線性動力反算法 、特徵根指定法 、非最小象限系統 、強健性 、飛行控制系統設計 |
| 外文關鍵詞: | nonlinear dynamic inversion method, eigenvalue assignment method, non-minimum phase system, robustness, flight control system design |
| 相關次數: | 點閱:155 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文針對現有非線性動力反算控制方法提出一個整合性非線性動力反算法,並應用特徵根指定法於追蹤動態設計求得控制系統增益值,以改善現有控制方法的問題。此方法將可以非常直接方便的方式被應用於實際系統。藉由使用此方法,不須在控制設計開始前以回授線性化方法將非線性方程式轉換成線性方程式。如果小心地選定追蹤動態的特徵根使得期望動態穩定,此方法的應用不限於仿射非線性控制系統,也不限於最小象限系統的問題。使用此方法的控制設計顯示對於模型的誤差具有強健性。為驗證此方法,本文以類似F-16外型的無人機為例,做控制系統設計,數值模擬結果顯示對於性能的設計相當顯著。
This dissertation presents a unified approach to nonlinear dynamic inversion control algorithm with the parameters for desired dynamics determined in unmanned aerial vehicle using an eigenvalue assignment method, which may be applied for actual systems in a very straightforward and convenient way. By using the proposed method, it is not necessary to transform the nonlinear equations into linear equations by feedback linearization before beginning control designs. The applications of this method are not limited to affine nonlinear control systems, nor are limited to minimum phase problems if the eigenvalues of tracking dynamics are carefully assigned so that the desired dynamics is stable. The control design by using this method is shown to be robust to modeling uncertainties. To validate the theory, the design of F-16 like UAV control system is presented as an example with numerical simulations to show the performance of the design to be quite remarkable.
[1] M. R. Mendenhall, S. C. Perkins, M. Tomac, A. Rizzi, and R. K. Nangia, “Comparing and benchmarking engineering methods for the prediction of X-31 aerodynamics,” Aerospace Science and Technology, Vol. 20, No.1, 2012, pp. 12-20.
[2] A. J. Krener, “On the Equivalence of Control Systems and Linearization of Nonlinear Systems,” SIAM Journal on Control, Vol. 11, No. 4, 1973, pp. 670-676.
[3] R. W. Brockett, “Feedback Invariants for Nonlinear Systems,” Proceedings of VII IFAC Congress, Helsinki, Finland, 1978, pp. 1115-1120.
[4] P. L. Falb, and W. A. Wolovich, “Decoupling in the Design and Synthesis of Multivariable Control Systems,” IEEE Transactions on Automatic Control, Vol. 12, No. 6, 1967, pp. 651-659.
[5] S. N. Singh and W. J. Rugh, “Decoupling in a Class of Nonlinear Systems by State Variable Feedback,” Transactions of ASME Journal of Dynamic Systems Measurements and Control, Vol. 94, No. 4, 1972, pp. 323-329.
[6] E. Freund, “Design of Time-Variable Multivariable Systems by Decoupling and by the Inverse,” IEEE Transactions of Automatic Control, Vol. AC-16, No. 2, 1971, pp. 183-185.
[7] W. A. Porter, “Diagonalisation and Inverses for Nonlinear Systems,” International Journal of Control, Vol. 11, No. 1, 1970, pp. 67-76.
[8] A. Isidori, A. J. Krener, C. Giorgi, and S. Monaco, “Nonlinear Decoupling Via Feedback: a Differential Geometry Approach,” IEEE Transactions on Automatic Control, Vol. AC-26, No. 2, 1981, pp. 331-345.
[9] B. D. Vu, “Nonlinear Dynamic Inversion Control,” Robust Flight Control, Springer Berlin Heidelberg, 1997, pp. 102-111.
[10] D. J. Bugaski, D. F. Enns, and M. R. Elgersma, “A Dynamic Inversion Based Control with Application to the F-18 HARV,” AIAA Paper 90-3407, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, OR, 1990, pp. 826-839.
[11] Honeywell Technology Center and Houston Engineering Center, “Application of MACH to X-38 Drop Test Vehicle,” HTC Contract Number 7028327, for NASA Johnson Space Center, June 1997.
[12] S. A. Snell, D. F. Enns, and W. L. Garrard Jr., “Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 976-984.
[13] J. O. Pedro, A. Panday, and L. Dala, “A nonlinear dynamic inversion-based neurocontroller for unmanned combat aerial vehicles during aerial refuelling,” International Journal of Applied Mathematics and Computer Science, Vol. 23, No. 1, 2013, pp. 75-90.
[14] M. L. Ireland, A. Vargas, and D. Anderson, “A comparison of closed-loop performance of multirotor configurations using non-linear dynamic inversion control,” Aerospace, Vol. 2, No. 2, 2015, pp. 325-352.
[15] P. P. Menon, M. Lowenberg, G. Herrmann, M. C. Turner, D. G. Bates, and I. Postlethwaite, “Experimental Implementation of a Nonlinear Dynamic Inversion Controller with Antiwindup,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1035-1046.
[16] G. Gao, J. Wang, and X. Wang, “Adaptive fault-tolerant control for feedback linearizable systems with an aircraft application,” International Journal of Robust and Nonlinear Control, Vol. 25, No. 9, 2015, pp. 1301–1326.
[17] H. N. Foghahaayee, M. B. Menhaj, and H. A. Talebi, “Weakly and strongly non-minimum phase systems: properties and limitations,” International Journal of Control, 2015, pp. 1–16.
[18] L. Fiorentini and A. Serrani, “Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model,” Automatica, Vol. 48, No. 7, 2012, pp. 1248-1261.
[19] A. R. Babaei, M. Mortazavi, and M. H. Moradi, “Fuzzy sliding mode autopilot design for nonminimum phase and nonlinear UAV,” Journal of Intelligent and Fuzzy Systems, Vol. 24, No. 3, 2013, pp. 499-509.
[20] J. Dai, and Y. Xia, “Trajectory Tracking Method for UAV Based on Intelligent Adaptive Control and Dynamic Inversion,” Foundations and Applications of Intelligent Systems, Springer Berlin Heidelberg, 2014, pp. 347-357.
[21] N. Dadkhah and B. Mettler, “Control system design and evaluation for robust autonomous rotorcraft guidance,” Control Engineering Practice, Vol. 21, No. 11, 2013, pp. 1488-1506.
[22] Z. Lang and A.Wu, “Study on dual-loop controller of helicopter based on the robust h-infinite loop shaping method,” Applied Mechanics and Materials, Vol. 130-134, 2012, pp. 1182-1185.
[23] S. Sieberling, Q. P. Chu, and J. A. Mulder, “Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 6, 2010, pp. 1732-1742.
[24] A. Rahideh, A. H. Bajodah, and M. H. Shaheed, “Real time adaptive nonlinear model inversion control of a twin rotor MIMO system using neural networks,” Engineering Applications of Artificial Intelligence, Vol. 25, No. 6, 2012, pp. 1289-1297.
[25] J. Georgie and J. Valasek, “Evaluation of longitudinal desired dynamics for dynamic-inversion controlled generic reentry vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 5, 2003, pp. 811-819.
[26] G. A. Smith and G. Meyer, “Aircraft automatic flight control system with model inversion,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 3, 1987, pp. 269-275.
[27] I. Yang, D. Lee, and D. S. Han, “Designing a robust nonlinear dynamic inversion controller for spacecraft formation flying,” Mathematical Problems in Engineering, Vol. 2014, Article ID 471352, 2014, 12 pages.
[28] S. S. Ge and J. Zhang, “Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback,” IEEE Transactions on Neural Networks, Vol. 14, No. 4, 2003, pp. 900-918.
[29] N. Hovakimyan, E. Lavretsky, and C. Cao, “Dynamic inversion of multi-input nonaffine systems via time-scale separation,” In Proceedings of the American Control Conference, 2006, pp. 3594-3599.
[30] J. J. Romano and S. N. Singh, “IO map inversion, zero dynamics and flight control,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 6, 1990, pp. 1022-1029.
[31] D. Nešić, E. Skafidas, I. M. Mareels, and R. J. Evans, “Minimum phase properties for input nonaffine nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 44, No. 4, 1999, pp. 868-872.
[32] S. A. Al-Hiddabi and N. H. McClamroch, “Tracking and maneuver regulation control for nonlinear nonminimum phase systems: Application to flight control,” IEEE Transactions on Control Systems Technology, Vol. 10, No. 6, 2002, pp. 780-792.
[33] M.A. Bolender and D.B. Doman, “Flight path angle dynamics of air-breathing hypersonic vehicles,” In Proceedings of the AIAA guidance, navigation, and control conference. Keystone, CO. AIAA Paper 2006–6692.
[34] Yu-Chi Wang, D. L. Sheu, C. E. Lin, “Modification of Nonlinear Dynamic Inversion for UAV Flight Control Design”, International Conference on Engineering and Applied Sciences Optimization (OPT-i), Kos Island, Greece, June 4-6, 2014.
[35] D. J. Bugajski, and D. F. Enns, “Nonlinear Control Law with Application to High Angle-of-Attack Flight,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 761-767.
[36] N. Hovakimyan, E. Lavretsky, and A. Sasane, “Dynamic inversion for nonaffine-in-control systems via time-scale separation. Part I,” Journal of Dynamical and Control Systems, Vol. 13, No. 4, 2007, pp. 451-465.
[37] C. T. E. Lan, “VORSTAB, a computer program for calculating lateral directional stability derivatives with vortex flow effect,” NASA CR-172501, NASA, 1985.
[38] Z. Wang, C. T. E. Lan, and J. M. Brandon, “Fuzzy Logic Modeling of Nonlinear Unsteady Aerodynamics,” AIAA Paper 98-4351, Aug. 1998.
[39] Che-Ping Su and C. T. E. Lan, “Rapid Development of Simulation Models for Flight Dynamic Application,” AIAA Paper 99-4105, Aug. 1999.
[40] C. T. E. Lan, “Methods of Analysis in the Vorstab Code,” The University of Kansas, August 2000.
[41] J. Li and C. T. E. Lan, “Unsteady Aerodynamic Modeling of Aircraft Response to Atmospheric Turbulence,” AIAA Paper 2003-5473, Aug. 2003.
[42] R. Y. Thomas, Introduction to Aircraft Flight Mechanics, AIAA Education Series, May, 2003, ISBN 1-56347-577-4.
[43] Y. Zhao, and A. E. Bryson, “Approach Guidance in a Downburst,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 893-900.