| 研究生: |
楊雅惠 Yang, Ya-Hui |
|---|---|
| 論文名稱: |
以陰離子聚合法製備含高乙烯基(Vinyl)之三嵌段團鏈共聚物及其於聚氧二甲苯摻混應用之研究 Synthesis of High Vinyl Content Triblock Copolymers via Anionic Polymerization and Their Blending Application with Polyphenlyene oxide |
| 指導教授: |
陳志勇
Chen, Chuh-Yung 陳炳宏 Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 活性陰離子聚合法 、三嵌段團鏈共聚物 、異戊二烯 、苯乙烯 、乙烯基含量 、聚氧二甲苯 、低介電材 |
| 外文關鍵詞: | Anionic living polymerization, triblock copolymer, isoprene, styrene, vinyl content, polyphenylene ether, low dielectric material |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以陰離子聚合法(Anionic Living Polymerization,ALP)搭配正丁基鋰離子起始劑(n-BuLi Initiator)製備末端具側鏈雙鍵的聚異戊二烯-聚異戊二烯-聚苯乙烯(1,2-和3,4-addition PI-b-1,4-addition PI-b-PS,IIS)三嵌段團鏈共聚物。三嵌段團鏈共聚物根據1H NMR分析的結果顯示,IIS中PI鏈段結構的1,2-和3,4-addition (Vinyl group)結構含量在13.3% – 41.7%範圍內,其含量可通過調整反應溫度和四氫呋喃(THF)的添加量來控制。GPC量測IIS的Mn和PDI分別在11,000–13,000 Da和1.08–1.16之間。DSC熱性質分析曲線上存在著PI和PS相的兩個玻璃轉變溫度(Tg)點,其中,較低Tg的數值與嵌段共聚物中PI的Vinyl group含量有關;PI中的Vinyl group結構含量愈低Tg愈低, Tg值分別為–53 ℃至–20℃之間。進一步的應用於聚氧二甲苯(Polyphenylene ether, PPE)摻混改質方面,PPE與上述PI Vinyl group含量為40% – 45%的三嵌段團鏈共聚物IIS進行摻混,能有效降低摻混體的介電損耗 (Dissipation factor, Df),並提升其與銅箔間的剝離強度,將PPE與IIS以特定配方摻混,剝離強度可提升至5.87 lb/in;另外,以PPE/IIS為80/20的重量比例進行摻混,介電損耗能從0.0027降低至0.0017,優於5G通訊硬體中的材料規格。
This study utilizes Anionic Living Polymerization (ALP) in conjunction with n-Butyllithium (n-BuLi) initiator to synthesize a triblock copolymer with pendant double bonds at the chain ends, consisting of polyisoprene-polyisoprene-polystyrene (1,2- and 3,4-addition PI-b-1,4-addition PI-b-PS, denoted as IIS). According to the results of 1H NMR analysis, the content of the 1,2- and 3,4-addition (Vinyl group) structures in the PI segments of IIS falls within the range of 13.3% to 41.7%. This content can be controlled by adjusting reaction temperature and the amount of tetrahydrofuran (THF) added.
Gel Permeation Chromatography (GPC) measurements reveal Mn and PDI of IIS in the ranges of 11,000–13,000 Da and 1.08–1.16, respectively. Differential Scanning Calorimetry (DSC) analysis displays two glass transition temperature (Tg) points corresponding to the PI and PS phases in the copolymer. The lower Tg values are correlated with the Vinyl group content in the block copolymer. A lower Vinyl group content in the PI segments results in lower Tg values, ranging from -53°C to -20°C.
Furthermore, when applied in the modification of Polyphenylene Ether (PPE) through blending, the triblock copolymer IIS with a Vinyl group content of 40%–45% effectively reduces the dissipation factor (Df) of the blend, enhancing peel strength between the blend and copper foil. By using a specific formulation of PPE and IIS, the peel strength can be elevated to 5.87 lb/in. Additionally, by blending PPE with IIS in a weight ratio of 80/20, the dissipation factor can be reduced from 0.0027 to 0.0017, surpassing material specifications for 5G communication hardware.
1. Lee, P.-C., C.-C. Wang, and C.-Y. Chen, Synthesis of high-vinyl isoprene and styrene triblock copolymers via anionic polymerization with difunctional t-BuLi initiator. European Polymer Journal, 2020. 124: p. 109476.
2. Schue, F., D. Worsfold, and S. Bywater, The Structure of Oligomeric Poly (isoprenyllithium). Macromolecules, 1970. 3(5): p. 509-513.
3. Davidson, N., L. Fetters, W. Funk, N. Hadjichristidis, and W. Graessley, Measurement of chain dimensions in dilute polymer solutions: a light scattering and viscometric study of linear polyisoprene in cyclohexane. Macromolecules, 1987. 20(10): p. 2614-2619.
4. Adachi, K. and T. Kotaka, Dielectric normal mode process in dilute solutions of cis-polyisoprene. Macromolecules, 1987. 20(8): p. 2018-2023.
5. Imanishi, Y., K. Adachi, and T. Kotaka, Further investigation of the dielectric normal mode process in undiluted cis‐polyisoprene with narrow distribution of molecular weight. The Journal of chemical physics, 1988. 89(12): p. 7585-7592.
6. Adachi, K., S. Itoh, I. Nishi, and T. Kotaka, Dielectric normal mode process in binary blends of polyisoprene. 2. Dynamic behavior. Macromolecules, 1990. 23(9): p. 2554-2559.
7. 吳建邦, 以複合式活性聚合法製備功能性團鏈共聚物及其於聚乳酸摻混應用研究 國立成功大學化學工程學系博士論文, 2015.
8. 周子琪, LTCC 基板材料在5G 的應用現況與未來發展. 材料世界網, 2020.
9. S.Y. Huang, K.Y.H., Y. M. Chen, Recent Developments of Low Dielectric Loss Materials and Its Application in 5G Mobile Networks. 2020.
10. Tong, C., Advanced Materials and Components for 5G and Beyond. Vol. 327. 2022: Springer Nature.
11. 陳文彥, 5G新浪潮毫米波通訊關鍵材料大進擊. 工業材料雜誌406期, 2020.
12. M.T.Hong, The Development of Low Loss Substrate Materials. 2020.
13. S. Y. Huang, K.Y.H., The Era of High Speed and High Frequency – Recent Developments of Low Dielectric Loss Insulating Materials. 2021.
14. 陳文彥, 5G毫米波通訊引爆新材料發展. 工業材料雜誌, 2018.
15. Cayamcela, M.E.M. and W. Lim. Artificial intelligence in 5G technology: A survey. in 2018 International Conference on Information and Communication Technology Convergence (ICTC). 2018. Institute of Electrical and Electronics Engineers.
16. Zhang, C., Y.-L. Ueng, C. Studer, and A. Burg, Artificial intelligence for 5G and beyond 5G: Implementations, algorithms, and optimizations. Institute of Electrical and Electronics Engineers Journal on Emerging and Selected Topics in Circuits and Systems, 2020. 10(2): p. 149-163.
17. Wang, C.-X., M. Di Renzo, S. Stanczak, S. Wang, and E.G. Larsson, Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. Institute of Electrical and Electronics Engineers Wireless Communications, 2020. 27(1): p. 16-23.
18. Qiao, L., Y. Li, D. Chen, S. Serikawa, M. Guizani, and Z. Lv, A survey on 5G/6G, AI, and Robotics. Computers and Electrical Engineering, 2021. 95: p. 107372.
19. Flory, P.J., Principles of polymer chemistry. 1953: Cornell university press.
20. Szwarc, M., M. Levy, and R. Milkovich, Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers1. Journal of the American Chemical Society, 1956. 78(11): p. 2656-2657.
21. Van Beylen, M., S. Bywater, G. Smets, M. Szwarc, and D.J. Worsfold, Developments in anionic polymerization—a critical review. Polysiloxane Copolymers/Anionic Polymerization, 2005: p. 87-143.
22. 李品蓁, 以複合式活性自由基及雙鋰離子聚合法製備含高乙烯基(Vinyl)鏈段型之三嵌段團鏈共聚合物及其物性之研究. 國 立 成 功 大 學化 學 工 程 學 系博 士 論 文, 2021.
23. Hsieh, H. and R.P. Quirk, Anionic polymerization: principles and practical applications. 1996: CRC Press.
24. Quirk, R.P. and B. Lee, Experimental criteria for living polymerizations. Polymer International, 1992. 27(4): p. 359-367.
25. Morton, M. and L.J. Fetters, Anionic polymerization of vinyl monomers. Rubber Chemistry and Technology, 1975. 48(3): p. 359-409.
26. Worsfold, D.J. and S. Bywater, Anionic polymerization of isoprene. Canadian Journal of Chemistry, 1964. 42(12): p. 2884-2892.
27. Bywater, S. and D. Worsfold, Anionic polymerization of isoprene. Ion and ion-pair contributions to polymerization in tetrahydrofuran. Canadian Journal of Chemistry, 1967. 45(16): p. 1821-1824.
28. Morton, M., Anionic polymerization: principles and practice. 2012: Elsevier.
29. Young, R.N., R.P. Quirk, and L. Fetters, Anionic polymerizations of non-polar monomers involving lithium. Anionic Polymerization, 1984: p. 1-90.
30. Quirk, R.P., Q. Zhuo, S.H. Jang, Y. Lee, and G. Lizarraga, Principles of Anionic Polymerization: An introduction. 1998, ACS Publications.
31. Bywater, S. and D. Worsfold, Alkyllithium anionic polymerization initiators in hydrocarbon solvents. Journal of Organometallic Chemistry, 1967. 10(1): p. 1-6.
32. Fetters, L., N. Balsara, J. Huang, H. Jeon, K. Almdal, and M. Lin, Aggregation in living polymer solutions by light and neutron scattering: A study of model ionomers. Macromolecules, 1995. 28(14): p. 4996-5005.
33. Baskaran, D. and A.H. Müller, Anionic vinyl polymerization—50 years after Michael Szwarc. Progress in Polymer Science, 2007. 32(2): p. 173-219.
34. Hadjichristidis, N., H. Iatrou, S. Pispas, and M. Pitsikalis, Anionic polymerization: High vacuum techniques. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(18): p. 3211-3234.
35. Glasse, M., Spontaneous termination in living polymers. Progress in Polymer Science, 1983. 9(2-3): p. 133-195.
36. Mai, Y. and A. Eisenberg, Self-assembly of block copolymers. Chemical Society Reviews, 2012. 41(18): p. 5969-5985.
37. Gromadzki, D., Engineering soft nanostructured functional materials via orthogonal chemistry. Reviews in Environmental Science and Bio/Technology, 2010. 9: p. 301-306.
38. Hong, K., D. Uhrig, and J.W. Mays, Living anionic polymerization. Current Opinion in Solid State and Materials Science, 1999. 4(6): p. 531-538.
39. Chang, A.B. and F.S. Bates, The ABCs of block polymers. 2020, ACS Publications. p. 2765-2768.
40. Geng, J., Y. Sun, and J. Hua, 1, 2-and 3, 4-rich polyisoprene synthesized by Mo (VI)-based catalyst with phosphorus ligand. Polymer Science Series B, 2016. 58: p. 495-502.
41. Nakayama, Y., Y. Baba, H. Yasuda, K. Kawakita, and N. Ueyama, Stereospecific polymerizations of conjugated dienes by single site iron complexes having chelating N, N, N-donor ligands. Macromolecules, 2003. 36(21): p. 7953-7958.
42. Wang, B., D. Cui, and K. Lv, Highly 3, 4-selective living polymerization of isoprene with rare earth metal fluorenyl N-heterocyclic carbene precursors. Macromolecules, 2008. 41(6): p. 1983-1988.
43. Hashimoto, T., N. Nakamura, M. Shibayama, A. Izumi, and H. Kawai, Microdomain size of styrene-lsoprene block copolymers and unperturbed chain dimension of polyisoprene having high 1, 2-and 3, 4-linkages. Journal of Macromolecular Science, Part B: Physics, 1980. 17(3): p. 389-406.
44. Dyball, C., D. Worsfold, and S. Bywater, Anionic polymerization of isoprene in diethyl ether. Macromolecules, 1979. 12(5): p. 819-822.
45. Tobolsky, A.V. and C.E. Rogers, Isoprene polymerization by organometallic compounds. II. Journal of Polymer Science, 1959. 40(136): p. 73-89.
46. Tang, T., J. Huang, B. Huang, J. Huang, and G. Wang, Synthesis of graft polymers with poly (isoprene) as main chain by living anionic polymerization mechanism. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(24): p. 5144-5150.
47. Hesterwerth, D., D. Beckelmann, and F. Bandermann, Classification of polar additives with respect to their influence on the microstructure in anionic polymerization of butadiene with butyllithium by transition energy measurements. Journal of applied polymer science, 1999. 73(8): p. 1521-1532.
48. Nishimura, I., S. Fujitomi, Y. Yamashita, N. Kawashima, and N. Miyaki. Development of new dielectric material to reduce transmission loss. in 2020 Institute of Electrical and Electronics Engineers 70th Electronic Components and Technology Conference (ECTC). 2020. Institute of Electrical and Electronics Engineers.
49. Shen, Y., The investigation of dielectric constant and loss tangent property for high speed transmission line loss. Taiwan Electromagnetic Industry-University Alliance, 2020.
50. Tasaki, T., A. Shiotani, M. Tsuji, T. Nakamura, and T. Yamaguchi. The low Dk/Df adhesives for high frequency printed circuit board using the novel solvent soluble polyimide. in 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2015. Institute of Electrical and Electronics Engineers.
51. 莊貴貽, 5G用絕緣層材料發展趨勢. 材料世界網, 2020.
52. Liao, L.Y., W.H. Ruan, M.Q. Zhang, and L. Weihao, Improving the Dimensional Stability of Polyphenylene Oxide without Reducing Its Dielectric Properties for High-Frequency Communication Applications. Industrial & Engineering Chemistry Research, 2023.
53. Venkatesh, M. and G. Raghavan, An overview of dielectric properties measuring techniques. Canadian biosystems engineering, 2005. 47(7): p. 15-30.
54. 高頻電路板Dk/Df值量測. 材料世界網, 2023.
55. Wu, X., C.a. Xu, M. Lu, K. Wang, Z. Li, and H. Yang, Preparation and characterization of high temperature resistant thermosetting polyphenylene ether resin. Journal of Applied Polymer Science, 2022. 139(39): p. e52858.
56. Ge, M., J. Zhang, C. Zhao, C. Lu, and G. Du, Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates. Materials & Design, 2019. 182: p. 108028.
57. Hu, W., J. Shen, J. Zhou, W. Jin, and W. Chen. Styrene-terminated polyphenylene oxide and polybutadiene low dielectric reactive blend. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
58. Kumano, T., Y. Kurita, K. Aoki, and T. Kashiwabara. Low Dielectric New Resin Cross-linkers. in 2022 Institute of Electrical and Electronics Engineers 72nd Electronic Components and Technology Conference (ECTC). 2022. Institute of Electrical and Electronics Engineers.
59. Qin, Y., X. Yu, Z. Fang, X. He, M. Qu, M. Han, D. Lu, K. Xue, and K. Wang, Recent progress on polyphenylene oxide-based thermoset systems for high-performance copper-clad laminates. Journal of Physics D: Applied Physics, 2023. 56(6): p. 064002.
60. Feng, S., Copper clad laminate for high frequency printed-circuit board in 5G era. 2018, University of York.
校內:2028-08-14公開