| 研究生: |
黃乃奕 Huang, Nai-Yi |
|---|---|
| 論文名稱: |
高分子複合薄膜應用於二氧化碳氣體分離之研究 Preparation of polymer composite membrane applied in carbon dioxide gas separation process |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 氣體分離薄膜 、水滑石 、聚苯胺 、相反轉 |
| 外文關鍵詞: | gas separation membrane, Layered double hydroxide, polyaniline, phase inversion method |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分別將軟質的聚乙烯醋酸乙烯酯(Ethylene Vinyl Acetate, EVA)高分子(rubbery polymer)與十二碳酸有機化水滑石(12AA-LDH)及二維三明治型態聚苯胺(Polyaniline, S-PANI)進行混摻製備高分子複合薄膜;另將聚醚碸(Polyether sulfone, PES)硬質高分子(glassy polymer)利用不同加工之方式製備高分子薄膜應用於氣體分離特性的量測。此高分子複合薄膜分別以FTIR、SEM及XRD分析12AA-LDH的插層效果與S-PANI的三層結構及其分散於高分子的型態,證實了12AA-LDH以剝離的狀態均勻的分散在水EVA高分子薄膜中,另S-PANI有明顯的三層二維片狀結構,同樣地均勻的分散在EVA高分子薄膜中。此二種高分子複合薄膜在CO2氣體分離測試結果顯示,12AA-LDH及S-PANI的添加有助於CO2氣體分離效果的改善。其中,當12AA-LDH添加量為1 wt%時,CO2/N2分離之選擇率由6.8提升至20.0,且達到約120 barrer之透過率;當添加S-PANI為3 wt%時,則可以將CO2/N2分離之選擇率提升至約32.5,氣體透過率可達97.5 barrer。另一方面,為解決PES氣體分離薄膜低透過率的特性,本研究利用乾式/濕式相反轉法(dry/wet phase inversion method)成功地製備出PES不對稱薄膜(asymmetric membrane)應用於氣體分離測試。PES不對稱膜對O2/N2之氣體選擇率為6.9,CO2/N2之氣體選擇率則有34.6,顯示本研究使用相反轉法所製備得不對稱薄膜在不經過修補情況之下(defect-free)便可以具有有效之氣體分離之結果。
Series of ethylene vinyl acetate (EVA) copolymer/layered double hydroxide (LDH) nanocomposite membranes (EVA/12AA–LDH) were prepared by solution blending and casting, and applied in membrane gas separation. The modification of LDH nanolayers (12AA-LDH) was manufactured by using 12-aminododecanoic acid (12AA) as an intercalation agent via co-precipitation method. The gas permeation performance of the EVA/12AA–LDH nanocomposite membranes was measured, and the results show that the best selectivity of CO2/N2 increased to 20 with a CO2 permeability of 119.21 Barrer for the composite membrane containing 1 wt% 12AA–LDH. The effect of the use of sandwich-like polyaniline (S-PANI) nanocomposites in CO2 gas separation membranes was also investigated. S-PANI were synthesized via a two-step dispersion polymerization method. The first step was to manufacture a leaf-like polyaniline (L-PANI), which was used in the next step as a 2D template to synthesize the S-PANI. The CO2/N2 separation performance of the EVA copolymer membrane was successfully enhanced by the addition of the S-PANI nanocomposite. The CO2/N2 selectivity of the membrane increased from 6.8 to 32.5 with a 3 wt% loading of S-PANI within the EVA matrix. Besides, a defect-free polyether sulfone (PES) asymmetric membrane was prepared by a one-step phase inversion process and applied gas separation process in this article. The morphology of the PES asymmetric membrane formed via phase inversion that was correlated with the solvent composition, evaporation environment, coagulation bath, etc. The selectivity of O2/N2 for membrane gas separation indicated that the asymmetric membranes prepared in this study were defect-free. The results of gas separation for the sponge-like PES membrane showed that the selectivity of O2/N2 and CO2/N2 was 7.1 and 35.6, respectively.
[1] F.A.H. Juber, Z.A. Jawad, B.L.F. Chin, S.P. Yeap, T.L. Chew, The prospect of synthesis of PES/PEG blend membranes using blend NMP/DMF for CO2/N2 separation, Journal of Polymer Research 28(5) (2021) 1-26.
[2] L.M. Robeson, The upper bound revisited, Journal of Membrane Science 320(1) (2008) 390-400.
[3] P. Pandey, R.S. Chauhan, Membranes for gas separation, Progress in Polymer Science 26(6) (2001) 853-893.
[4] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, Journal of Industrial and Engineering Chemistry 19(2) (2013) 375-393.
[5] P. Bernardo, E. Drioli, G. Golemme, Membrane Gas Separation: A Review/State of the Art, Industrial & Engineering Chemistry Research 48(10) (2009) 4638-4663.
[6] M.L. Cecopieri-Gómez, J. Palacios-Alquisira, J. Dominguez, On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes, Journal of Membrane Science 293(1-2) (2007) 53-65.
[7] S. Wang, Z. Tian, J. Feng, H. Wu, Y. Li, Y. Liu, X. Li, Q. Xin, Z. Jiang, Enhanced CO2 separation properties by incorporating poly (ethylene glycol)-containing polymeric submicrospheres into polyimide membrane, Journal of membrane science 473 (2015) 310-317.
[8] S. Luo, K.A. Stevens, J.S. Park, J.D. Moon, Q. Liu, B.D. Freeman, R. Guo, Highly CO2-selective gas separation membranes based on segmented copolymers of poly (ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments, ACS applied materials & interfaces 8(3) (2016) 2306-2317.
[9] P. Hacarlioglu, L. Toppare, L. Yilmaz, Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes, Journal of applied polymer science 90(3) (2003) 776-785.
[10] D. Sen, H. Kalipcilar, L. Yilmaz, Development of zeolite filled polycarbonate mixed matrix gas separation membranes, Desalination 200(1-3) (2006) 222-224.
[11] A. Moghadassi, Z. Rajabi, S. Hosseini, M. Mohammadi, Preparation and characterization of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membrane for CO2 separation, Separation Science and Technology 48(8) (2013) 1261-1271.
[12] J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane science 314(1-2) (2008) 123-133.
[13] H. Julian, P.D. Sutrisna, A.N. Hakim, H.O. Harsono, Y.A. Hugo, I.G. Wenten, Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation, Polymer-Plastics Technology and Materials 58(6) (2019) 678-689.
[14] M. Laghaei, M. Sadeghi, B. Ghalei, M. Shahrooz, The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: Polyethersulfone/MCM-41, Journal of Membrane Science 513 (2016) 20-32.
[15] I. Akbarian, A. Fakhar, E. Ameri, M. Sadeghi, Gas‐separation behavior of poly (ether sulfone)–poly (ethylene glycol) blend membranes, Journal of Applied Polymer Science 135(44) (2018) 46845.
[16] L. Ge, Z. Zhu, V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Separation and Purification Technology 78(1) (2011) 76-82.
[17] Y. Li, T.-S. Chung, Z. Huang, S. Kulprathipanja, Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation, Journal of Membrane Science 277(1) (2006) 28-37.
[18] H. Cong, B. Yu, Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation, Industrial & engineering chemistry research 49(19) (2010) 9363-9369.
[19] S. Feng, J. Ren, K. Hua, H. Li, X. Ren, M. Deng, Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation, Separation and Purification Technology 116 (2013) 25-34.
[20] W.N.H.W. Zainal, S.H. Tan, M.A. Ahmad, Carbon membranes prepared from a polymer blend of polyethylene glycol and polyetherimide, Chemical Engineering & Technology 40(1) (2017) 94-102.
[21] S.A. Mousavi, M. Sadeghi, M.M.Y. Motamed-Hashemi, M. Pourafshari Chenar, R. Roosta-Azad, M. Sadeghi, Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method, Separation and Purification Technology 62(3) (2008) 642-647.
[22] M. Shafiee, A. Ramazani S.A, Investigation of Barrier Properties of Poly(ethylene vinyl acetate)/Organoclay Nanocomposite Films Prepared by Phase Inversion Method, Macromolecular Symposia 274(1) (2008) 1-5.
[23] H. Adelnia, H.C. Bidsorkhi, A.F. Ismail, T. Matsuura, Gas permeability and permselectivity properties of ethylene vinyl acetate/sepiolite mixed matrix membranes, Separation and Purification Technology 146 (2015) 351-357.
[24] S. Kim, T.W. Pechar, E. Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation, Desalination 192(1) (2006) 330-339.
[25] K. Berean, J.Z. Ou, M. Nour, K. Latham, C. McSweeney, D. Paull, A. Halim, S. Kentish, C.M. Doherty, A.J. Hill, K. Kalantar-zadeh, The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation, Separation and Purification Technology 122 (2014) 96-104.
[26] W.J. Koros, G. Fleming, Membrane-based gas separation, Journal of membrane science 83(1) (1993) 1-80.
[27] S.A. Kumar, H. Yuelong, D. Yumei, Y. Le, M. Kumaran, S. Thomas, Gas transport through nano poly (ethylene-co-vinyl acetate) composite membranes, Industrial & engineering chemistry research 47(14) (2008) 4898-4904.
[28] M. Sadeghi, G. Khanbabaei, A.H.S. Dehaghani, M. Sadeghi, M.A. Aravand, M. Akbarzade, S. Khatti, Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes, Journal of Membrane Science 322(2) (2008) 423-428.
[29] C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, Journal of Membrane Science 279(1-2) (2006) 1-49.
[30] S.A. Mousavi, M. Gholizadeh, S. Sedghi, M. Pourafshari-Chenar, M. Barmala, A. Soltani, Effects of preparation conditions on the morphology and gas permeation properties of polyethylene (PE) and ethylene vinyl acetate (EVA) films, Chemical Engineering Research and Design 88(12) (2010) 1593-1598.
[31] P. Goh, A. Ismail, S. Sanip, B. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology 81(3) (2011) 243-264.
[32] G. Clarizia, C. Algieri, E. Drioli, Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane, Polymer 45(16) (2004) 5671-5681.
[33] M.A. Zamiri, A. Kargari, H. Sanaeepur, Ethylene vinyl acetate/poly (ethylene glycol) blend membranes for CO2/N2 separation, Greenhouse Gases: Science and Technology 5(5) (2015) 668-681.
[34] M. Jia, Y. Feng, J. Qiu, X.-F. Zhang, J. Yao, Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation, Separation and Purification Technology 213 (2019) 63-69.
[35] A.K. Zulhairun, A.F. Ismail, T. Matsuura, M.S. Abdullah, A. Mustafa, Asymmetric mixed matrix membrane incorporating organically modified clay particle for gas separation, Chemical Engineering Journal 241 (2014) 495-503.
[36] H. Zhu, L. Wang, X. Jie, D. Liu, Y. Cao, Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al), ACS Applied Materials & Interfaces 8(34) (2016) 22696-22704.
[37] S. Loeb, S. Sourirajan, High-flow semipermeable membranes for separation of water from saline solutions, Adv Chem Ser 38(1) (1962) 117-132.
[38] S. Pesek, W. Koros, Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation, Journal of membrane science 81(1-2) (1993) 71-88.
[39] D.-M. Wang, J.-Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation, Current Opinion in Chemical Engineering 2(2) (2013) 229-237.
[40] N. Scharnagl, H. Buschatz, Polyacrylonitrile (PAN) membranes for ultra-and microfiltration, Desalination 139(1-3) (2001) 191-198.
[41] J.-F. Blanco, J. Sublet, Q.T. Nguyen, P. Schaetzel, Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process, Journal of membrane science 283(1-2) (2006) 27-37.
[42] I. Pinnau, J. Wind, K.V. Peinemann, Ultrathin multicomponent poly (ether sulfone) membranes for gas separation made by dry/wet phase inversion, Industrial & engineering chemistry research 29(10) (1990) 2028-2032.
[43] S.A. Mousavi, M. Sadeghi, M.M.Y. Motamed-Hashemi, M.P. Chenar, R. Roosta-Azad, M. Sadeghi, Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method, Sep. Purif. Technol. 62(3) (2008) 642-647.
[44] J. Han, W. Lee, J.M. Choi, R. Patel, B.-R. Min, Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation, Journal of membrane science 351(1-2) (2010) 141-148.
[45] W. Elford, Principles governing the preparation of membranes having graded porosities. The properties of “gradocol” membranes as ultrafilters, Transactions of the Faraday Society 33 (1937) 1094-1104.
[46] C.-L. Li, D.-M. Wang, A. Deratani, D. Quémener, D. Bouyer, J.-Y. Lai, Insight into the preparation of poly (vinylidene fluoride) membranes by vapor-induced phase separation, Journal of membrane science 361(1-2) (2010) 154-166.
[47] N. Ismail, A. Venault, J.-P. Mikkola, D. Bouyer, E. Drioli, N.T.H. Kiadeh, Investigating the potential of membranes formed by the vapor induced phase separation process, Journal of Membrane Science 597 (2020) 117601.
[48] C. Smolders, A. Reuvers, R. Boom, I. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids, Journal of Membrane Science 73(2-3) (1992) 259-275.
[49] J. Kurdi, A. Tremblay, Preparation of defect‐free asymmetric membranes for gas separations, Journal of applied polymer science 73(8) (1999) 1471-1482.
[50] P. Van de Witte, P. Dijkstra, J. Van den Berg, J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation, Journal of membrane science 117(1-2) (1996) 1-31.
[51] J. Ren, Z. Li, F.-S. Wong, Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process, Journal of membrane science 241(2) (2004) 305-314.
[52] R. Roy, S. Komarneni, D. Roy, Multi-phasic ceramic composites made by sol-gel technique, MRS Online Proceedings Library Archive 32 (1984).
[53] A. Okada, M. Kawasumi, T. Kurauchi, O. Kamigaito, Synthesis and characterization of a nylon 6-clay hybrid, Abstracts of Papers of The American Chemical Society, AMER CHEMICAL SOC 1155 16TH ST, NW, Washinton, DC 20036, 1987.
[54] T. Lan, P.D. Kaviratna, T.J. Pinnavaia, Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites, Chemistry of Materials 7(11) (1995) 2144-2150.
[55] A. Ghadimi, T. Mohammadi, N. Kasiri, Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanoparticles), International Journal of Hydrogen Energy 40(31) (2015) 9723-9732.
[56] H.-C. Yang, J. Hou, V. Chen, Z.-K. Xu, Surface and interface engineering for organic–inorganic composite membranes, Journal of Materials Chemistry A 4(25) (2016) 9716-9729.
[57] M.L. Sforça, I.V.P. Yoshida, C.P. Borges, S.P. Nunes, Hybrid membranes based on SiO2/polyether-b-polyamide: Morphology and applications, Journal of Applied Polymer Science 82(1) (2001) 178-185.
[58] J. Kim, Q. Fu, K. Xie, J.M. Scofield, S.E. Kentish, G.G. Qiao, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, Journal of Membrane Science 515 (2016) 54-62.
[59] J.M. Herrera-Alonso, Z. Sedláková, E. Marand, Gas transport properties of polyacrylate/clay nanocomposites prepared via emulsion polymerization, Journal of Membrane Science 363(1) (2010) 48-56.
[60] R.S. Murali, M. Padaki, T. Matsuura, M. Abdullah, A. Ismail, Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation, Separation and Purification Technology 132 (2014) 187-194.
[61] Y. Wang, L. Li, X. Zhang, J. Li, C. Liu, N. Li, Z. Xie, Polyvinylamine/graphene oxide/PANI@ CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance, Journal of Membrane Science 589 (2019) 117246.
[62] G.E. Cmarik, M. Kim, S.M. Cohen, K.S. Walton, Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization, Langmuir 28(44) (2012) 15606-15613.
[63] H. Adelnia, H.C. Bidsorkhi, A. Ismail, T. Matsuura, Gas permeability and permselectivity properties of ethylene vinyl acetate/sepiolite mixed matrix membranes, Separation and Purification Technology 146 (2015) 351-357.
[64] G.-A. Wang, C.-C. Wang, C.-Y. Chen, The disorderly exfoliated LDHs/PMMA nanocomposite synthesized by in situ bulk polymerization, Polymer 46(14) (2005) 5065-5074.
[65] G.-A. Wang, C.-C. Wang, C.-Y. Chen, The disorderly exfoliated LDHs/PMMA nanocomposites synthesized by in situ bulk polymerization: The effects of LDH-U on thermal and mechanical properties, Polymer Degradation and Stability 91(10) (2006) 2443-2450.
[66] C.-H. Tseng, H.-B. Hsueh, C.-Y. Chen, Effect of reactive layered double hydroxides on the thermal and mechanical properties of LDHs/epoxy nanocomposites, Composites Science and Technology 67(11) (2007) 2350-2362.
[67] M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions, Progress in Polymer Science 39(5) (2014) 817-861.
[68] G. Choudalakis, A. Gotsis, Permeability of polymer/clay nanocomposites: a review, European polymer journal 45(4) (2009) 967-984.
[69] E. Suzuki, Y. Ono, Aldol condensation reaction between formaldehyde and acetone over heat-treated synthetic hydrotalcite and hydrotalcite-like compounds, Bulletin of the Chemical Society of Japan 61(3) (1988) 1008-1010.
[70] J. Twu, P.K. Dutta, Structure and reactivity of oxovanadate anions in layered lithium aluminate materials, The Journal of Physical Chemistry 93(23) (1989) 7863-7868.
[71] T. Kuila, S. Srivastava, A. Bhowmick, Rubber/LDH nanocomposites by solution blending, Journal of applied polymer science 111(2) (2009) 635-641.
[72] F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: Preparation, properties and applications, Catalysis today 11(2) (1991) 173-301.
[73] F. Rey, V. Fornés, J.M. Rojo, Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study, Journal of the Chemical Society, Faraday Transactions 88(15) (1992) 2233-2238.
[74] Y. Zhao, F. Li, R. Zhang, D.G. Evans, X. Duan, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps, Chemistry of Materials 14(10) (2002) 4286-4291.
[75] K. Chibwe, W. Jones, Intercalation of organic and inorganic anions into layered double hydroxides, Journal of the Chemical Society, Chemical Communications (14) (1989) 926-927.
[76] S.P. Newman, W. Jones, Synthesis, characterization and applications of layered double hydroxides containing organic guests, New Journal of Chemistry 22(2) (1998) 105-115.
[77] H.-B. Hsueh, C.-Y. Chen, Preparation and properties of LDHs/polyimide nanocomposites, Polymer 44(4) (2003) 1151-1161.
[78] H.-B. Hsueh, C.-Y. Chen, Preparation and properties of LDHs/epoxy nanocomposites, Polymer 44(18) (2003) 5275-5283.
[79] C.-H. Tseng, H.-B. Hsueh, C.-Y. Chen, Effect of reactive layered double hydroxides on the thermal and mechanical properties of LDHs/epoxy nanocomposites, Composites science and technology 67(11-12) (2007) 2350-2362.
[80] M. Meyn, K. Beneke, G. Lagaly, Anion-exchange reactions of layered double hydroxides, Inorganic Chemistry 29(26) (1990) 5201-5207.
[81] S. Carlino, M.J. Hudson, Thermal intercalation of layered double hydroxides: capric acid into an Mg–Al LDH, Journal of Materials Chemistry 5(9) (1995) 1433-1442.
[82] E.D. Dimotakis, T.J. Pinnavaia, New route to layered double hydroxides intercalated by organic anions: precursors to polyoxometalate-pillared derivatives, Inorganic Chemistry 29(13) (1990) 2393-2394.
[83] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Progress in Polymer Science 34(8) (2009) 783-810.
[84] P.N. Adams, A.P. Monkman, Characterization of high molecular weight polyaniline synthesized at -40 oC using a 0.25:1 mole ratio of persulfate oxidant to aniline, Synthetic Metals 87(2) (1997) 165-169.
[85] E.M. Genies, A.A. Syed, C. Tsintavis, Electrochemical Study of Polyaniline in Aqueous and Organic Medium - Redox and Kinetic - Properties, Molecular Crystals and Liquid Crystals 121(1-4) (1985) 181-186.
[86] S. Zhu, M. Shi, S. Zhao, Z. Wang, J. Wang, S. Wang, Preparation and characterization of a polyethersulfone/polyaniline nanocomposite membrane for ultrafiltration and as a substrate for a gas separation membrane, RSC advances 5(34) (2015) 27211-27223.
[87] S. Zhao, Z. Wang, Z. Qiao, X. Wei, C. Zhang, J. Wang, S. Wang, Gas separation membrane with CO2 -facilitated transport highway constructed from amino carrier containing nanorods and macromolecules, Journal of Materials Chemistry A 1(2) (2013) 246-249.
[88] J. Han, G. Song, R. Guo, Nanostructure‐based leaf‐like polyaniline in the presence of an amphiphilic triblock copolymer, Advanced Materials 19(19) (2007) 2993-2999.
[89] X. Zhuang, X. Qian, J. Lv, Y. Wan, An alternative method to remove PEO–PPO–PEO template in organic–inorganic mesoporous nanocomposites by sulfuric acid extraction, Applied Surface Science 256(17) (2010) 5343-5348.
[90] Y.T. Kang, C.C. Wang, C.Y. Chen, Preparation of 2D leaf‐shaped and 3D flower‐shaped sandwich‐like polyaniline nanocomposites and application on anticorrosion, Journal of Applied Polymer Science 138(4) (2021) 49729.
[91] S. Rutherford, D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption 3(4) (1997) 283-312.
[92] A.L. Ahmad, J.K. Adewole, C.P. Leo, S. Ismail, A.S. Sultan, S.O. Olatunji, Prediction of plasticization pressure of polymeric membranes for CO2 removal from natural gas, Journal of Membrane Science 480 (2015) 39-46.
[93] A. Bos, I. Pünt, M. Wessling, H. Strathmann, CO2-induced plasticization phenomena in glassy polymers, Journal of membrane science 155(1) (1999) 67-78.
[94] A. Vyalikh, D. Massiot, U. Scheler, Structural characterisation of aluminium layered double hydroxides by 27Al solid-state NMR, Solid State Nuclear Magnetic Resonance 36(1) (2009) 19-23.
[95] S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, Direct Intercalation of Amino Acids into Layered Double Hydroxides by Coprecipitation, Journal of Solid State Chemistry 162(1) (2001) 52-62.
[96] X.R. Zeng, T.M. Ko, Structures and properties of chemically reduced polyanilines, Polymer 39(5) (1998) 1187-1195.
[97] V. Goodarzi, S.H. Jafari, H.A. Khonakdar, B. Ghalei, M. Mortazavi, Assessment of role of morphology in gas permselectivity of membranes based on polypropylene/ethylene vinyl acetate/clay nanocomposite, Journal of membrane science 445 (2013) 76-87.
[98] H. Kawakami, K. Nakajima, H. Shimizu, S. Nagaoka, Gas permeation stability of asymmetric polyimide membrane with thin skin layer: effect of polyimide structure, Journal of Membrane Science 212(1) (2003) 195-203.
[99] P. Vandezande, X. Li, L.E.M. Gevers, I.F.J. Vankelecom, High throughput study of phase inversion parameters for polyimide-based SRNF membranes, Journal of Membrane Science 330(1) (2009) 307-318.
校內:不公開