| 研究生: |
杜佳勳 Du, Jia-Xun |
|---|---|
| 論文名稱: |
使用MPCVD嫁接CNT於活性碳纖維布上以提高其使用於超級電容器之功率 CNT-grafted ACC electrode for enhanced power density |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 高功率超級電容器 、奈米碳管 、活性碳布 、電雙層電容器 |
| 外文關鍵詞: | high power supercapacitor, CNTs, ACCs, EDLCs |
| 相關次數: | 點閱:107 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本研究中,我們使用Fe-Si催化劑於微波輔助化學氣相沉積(microwave plasma chemical vapor deposition, MPCVD)系統中於活性碳纖維布(activated carbon cloth, ACC)上成長奈米碳管(carbon nanotubes, CNTs)並應用於超級電容器之電極上。關於CNTs/ACCs電極之電容器效能,我們使用循環伏安法(cyclic voltammetry, CV)和電化學阻抗頻譜(electrochemical impedance spectroscopy, EIS)來進行調查,而其它電極性質則是使用掃描式電子顯微鏡(scanning electron microscopy, SEM)、穿透式電子顯微鏡(transmission electron microscopy, TEM)、拉曼光譜儀、氮氣等溫吸附和X光電子能譜儀(X-ray photoelectron spectroscopy, XPS)來分別調查電極的表面形態、微結構、品質、比表面積和表面化學組成。在CV之結果中,因為CNTs提升了離子於電極內之擴散速率,故CNT-grafted ACC電極充份表現出高速充放電之能力。而Nyquist plot更發現CNTs能有效地消除電極與集電器之接觸電阻,因此提升了CNT-grafted ACC電極之功率密度。經由這些分析和cycle life測試,顯示CNT-grafted ACC為一個高功率和長使用壽命之電化學電容器,最大功率密度可達10 kW/kg,使用壽命至少20,000圈以上。
In this study, CNTs were grafted onto ACC by Fe-Si catalyst using MPCVD method and used in supercapacitor electrode. The obtained CNTs/ACCs electrodes were examined its electrochemical capacitive behavior by CV and EIS in 2 M H2SO4 solution. Other analysis such as SEM, TEM, Raman spectroscopy, N2 isothermal adsorption, XPS were also used for investigating morphology, microstructure, quality, specific surface area, surface chemical composition, respectively. The CV results show a CNTs/ACCs electrode without quickly fading because the CNTs promoted the ion migration rate along the CNTs. The Nyquist plot shows CNT-grafted ACC electrode has an intimate contact with current collector by CNT bridges resulting in a 0 contact resistance and therefore enhances the power density. An electric double layer capacitor (EDLC) with long cycle life and high power density were demonstrated.
1. Conway, B. E., Electrochemical supercapacitors - scientific fundamentals and technological applications. 1 ed.; Kluwer Academic/Plenum: New York, 1999.
2. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nat Mater 2008, 7, 845-854.
3. Frackowiak, E.; Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937-950.
4. Pandolfo, A. G.; Hollenkamp, A. F., Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11-27.
5. Lin, R.; Taberna, P.-L.; Fantini, S.; Presser, V.; Pérez, C. R.; Malbosc, F.; Rupesinghe, N. L.; Teo, K. B. K.; Gogotsi, Y.; Simon, P., Capacitive Energy Storage from −50 to 100 °C Using an Ionic Liquid Electrolyte. The Journal of Physical Chemistry Letters 2011, 2, 2396-2401.
6. Burke, A. F., Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of the IEEE 2007, 95, 806-820.
7. Chuang, C.-M.; Huang, C.-W.; Teng, H.; Ting, J.-M., Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors. Energy & Fuels 2010, 24, 6476-6482.
8. Andreas, H. A.; Conway, B. E., Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim. Acta 2006, 51, 6510-6520.
9. Xu, B.; Wu, F.; Chen, S.; Zhang, C.; Cao, G.; Yang, Y., Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim. Acta 2007, 52, 4595-4598.
10. Liu, X.; Pickup, P., Ru oxide/carbon fabric composites for supercapacitors. J. Solid State Electrochem. 2010, 14, 231-240.
11. Bard, A. J.; Faulkner, L. R., Electrochemical methods: fundamentals and applications. Wiley: 2001.
12. Zheng, J. P.; Jow, T. R., A New Charge Storage Mechanism for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142, L6-L8.
13. Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J., Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472-7477.
14. Lin, P.; She, Q.; Hong, B.; Liu, X.; Shi, Y.; Shi, Z.; Zheng, M.; Dong, Q., The Nickel Oxide/CNT Composites with High Capacitance for Supercapacitor. J. Electrochem. Soc. 2010, 157, A818-A823.
15. Zhang, J.; Kong, L.-B.; Cai, J.-J.; Li, H.; Luo, Y.-C.; Kang, L., Hierarchically porous nickel hydroxide/mesoporous carbon composite materials for electrochemical capacitors. Microporous Mesoporous Mater. 2010, 132, 154-162.
16. Kim, J. H.; Zhu, K.; Yan, Y. F.; Perkins, C. L.; Frank, A. J., Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO2 Nanotube Arrays. Nano Lett. 2010, 10, 4099-4104.
17. Hu, G. X.; Li, C. X.; Gong, H., Capacitance decay of nano porous nickel hydroxide. J. Power Sources 2010, 195, 6977-6981.
18. Wu, M.-S.; Huang, C.-Y.; Lin, K.-H., Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J. Power Sources 2009, 186, 557-564.
19. Zhao, T.; Jiang, H.; Ma, J., Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J. Power Sources 2011, 196, 860-864.
20. Yan, J.; Wei, T.; Qiao, W.; Shao, B.; Zhao, Q.; Zhang, L.; Fan, Z., Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 2010, 55, 6973-6978.
21. Gao, Y.; Chen, S.; Cao, D.; Wang, G.; Yin, J., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 2010, 195, 1757-1760.
22. Zheng, H.; Tang, F.; Lim, M.; Rufford, T.; Mukherji, A.; Wang, L.; Lu, G., Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films. J. Power Sources 2009, 193, 930-934.
23. Xiong, S.; Yuan, C.; Zhang, X.; Xi, B.; Qian, Y., Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors. Chem.-Eur. J. 2009, 15, 5320-5326.
24. Lei, Y.; Daffos, B.; Taberna, P. L.; Simon, P.; Favier, F., MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochim. Acta 2010, 55, 7454-7459.
25. Raymundo-Pinero, E.; Khomenko, V.; Frackowiak, E.; Beguin, F., Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors. J. Electrochem. Soc. 2005, 152, A229-A235.
26. Roberts, M. E.; Wheeler, D. R.; McKenzie, B. B.; Bunker, B. C., High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J. Mater. Chem. 2009, 19, 6977-6979.
27. Ghosh, S.; Inganäs, O., Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors. Adv. Mater. 1999, 11, 1214-1218.
28. Mastragostino, M.; Arbizzani, C.; Meneghello, L.; Paraventi, R., Electronically conducting polymers and activated carbon: Electrode materials in supercapacitor technology. Adv. Mater. 1996, 8, 331-334.
29. Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; Mourão, P. A. M., Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork. J. Anal. Appl. Pyrolysis 2006, 75, 120-127.
30. Yang, J.-B.; Ling, L.-C.; Liu, L.; Kang, F.-Y.; Huang, Z.-H.; Wu, H., Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution. Carbon 2002, 40, 911-916.
31. Kim, C.; Yang, K. S., Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl. Phys. Lett. 2003, 83, 1216-1218.
32. Qu, D.; Shi, H., Studies of activated carbons used in double-layer capacitors. J. Power Sources 1998, 74, 99-107.
33. Hsieh, C.-T.; Teng, H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 2002, 40, 667-674.
34. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
35. Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Jackson, J. L., Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition. Mater. Sci. Eng., C 2003, 23, 141-144.
36. Issi, J. P.; Langer, L.; Heremans, J.; Olk, C. H., Electronic properties of carbon nanotubes: Experimental results. Carbon 1995, 33, 941-948.
37. Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A., Thermal conductivity of single-walled carbon nanotubes. Physical Review B 1999, 59, R2514-R2516.
38. Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L., Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 2001, 87, 215502.
39. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P., Carbon nanotubes for lithium ion batteries. Energy & Environmental Science 2009, 2, 638-654.
40. Morris, R. S.; Dixon, B. G.; Gennett, T.; Raffaelle, R.; Heben, M. J., High-energy, rechargeable Li-ion battery based on carbon nanotube technology. J. Power Sources 2004, 138, 277-280.
41. Shah, R.; Zhang, X.; Talapatra, S., Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 2009, 20, 395202-395206.
42. Chunming, N.; Sichel, E. K., High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 1997, 70, 1480.
43. Kim, Y. J.; Kim, Y. A.; Chino, T.; Suezaki, H.; Endo, M.; Dresselhaus, M. S., Chemically Modified Multiwalled Carbon Nanotubes as an Additive for Supercapacitors. Small 2006, 2, 339-345.
44. Kim, B.; Chung, H.; Kim, W., High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology 2012, 23, 155401.
45. Bi, R.-R.; Wu, X.-L.; Cao, F.-F.; Jiang, L.-Y.; Guo, Y.-G.; Wan, L.-J., Highly Dispersed RuO2 Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. J. Phys. Chem. C 2010, 114, 2448-2451.
46. Fang, W.-C., Synthesis and Electrochemical Characterization of Vanadium Oxide/Carbon Nanotube Composites for Supercapacitors. J. Phys. Chem. C 2008, 112, 11552-11555.
47. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498-3502.
48. Pell, W. G.; Conway, B. E.; Marincic, N., Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2000, 491, 9-21.
49. Wang, K.-P.; Teng, H., Structural Feature and Double-Layer Capacitive Performance of Porous Carbon Powder Derived from Polyacrylonitrile-Based Carbon Fiber. J. Electrochem. Soc. 2007, 154, A993-A998.
50. Huang, C.-W.; Teng, H., Influence of Carbon Nanotube Grafting on the Impedance Behavior of Activated Carbon Capacitors. J. Electrochem. Soc. 2008, 155, A739-A744.
51. Huang, C.-W.; Chuang, C.-M.; Ting, J.-M.; Teng, H., Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes. J. Power Sources 2008, 183, 406-410.
52. Liu, X.; Wang, Y.; Zhan, L.; Qiao, W.; Liang, X.; Ling, L., Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J. Solid State Electrochem. 2011, 15, 413-419.
53. Wang, G.; Shao, Z.; Yu, Z., Comparisons of different carbon conductive additives on the electrochemical performance of activated carbon. Nanotechnology 2007, 18, 205705-205710.
54. Yi, B.; Chen, X.; Guo, K.; Xu, L.; Chen, C.; Yan, H.; Chen, J., High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance. Mater. Res. Bull. 2011, 46, 2168-2172.
55. Chuang, C.-M.; Sharma, S. P.; Ting, J.-M.; Lin, H.-P.; Teng, H.; Huang, C.-W., Preparation of sea urchin-like carbons by growing one-dimensional nanocarbon on mesoporous carbons. Diamond Relat. Mater. 2008, 17, 606-610.
56. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I., Electrochemical capacitance of self-ordered mesoporous carbon. J. Power Sources 2003, 122, 219-223.
57. Ishikawa, M.; Sakamoto, A.; Monta, M.; Matsuda, Y.; Ishida, K., Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources 1996, 60, 233-238.
58. Okajima, K.; Ikeda, A.; Kamoshita, K.; Sudoh, M., High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim. Acta 2005, 51, 972-977.
59. Portet, C.; Taberna, P. L.; Simon, P.; Flahaut, E., Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J. Power Sources 2005, 139, 371-378.
60. Taberna, P.-L.; Chevallier, G.; Simon, P.; Plée, D.; Aubert, T., Activated carbon–carbon nanotube composite porous film for supercapacitor applications. Mater. Res. Bull. 2006, 41, 478-484.
61. Taberna, P. L.; Simon, P.; Fauvarque, J. F., Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 2003, 150, A292-A300.
62. Hughes, M.; Shaffer, M. S. P.; Renouf, A. C.; Singh, C.; Chen, G. Z.; Fray, D. J.; Windle, A. H., Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole. Adv. Mater. 2002, 14, 382-385.
63. Du, C.; Pan, N., High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 2006, 17, 5314.
64. An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H., Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes. Adv. Funct. Mater. 2001, 11, 387-392.
65. Li, C.; Wang, D.; Liang, T.; Wang, X.; Ji, L., A study of activated carbon nanotubes as double-layer capacitors electrode materials. Mater. Lett. 2004, 58, 3774-3777.
66. Chen, X. L.; Li, W. S.; Tan, C. L.; Li, W.; Wu, Y. Z., Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J. Power Sources 2008, 184, 668-674.
67. Bonnefoi, L.; Simon, P.; Fauvarque, J. F.; Sarrazin, C.; Dugast, A., Electrode optimisation for carbon power supercapacitors. J. Power Sources 1999, 79, 37-42.
68. Ajina, A.; Isa, D. In Capacitance and equivalent series resistance (ESR) optimization using the Taguchi technique for EDLC's, Electronic Devices, Systems and Applications (ICEDSA), 2010 Intl Conf on, 11-14 April 2010; 2010; pp 335-339.
69. Hsieh, C.-T.; Chen, W.-Y.; Lin, J.-H., Synthesis of carbon nanotubes on carbon fabric for use as electrochemical capacitor. Microporous Mesoporous Mater. 2009, 122, 155-159.
70. Kim, D. Y.; Yang, C.-M.; Park, Y. S.; Kim, K. K.; Jeong, S. Y.; Han, J. H.; Lee, Y. H., Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition. Chem. Phys. Lett. 2005, 413, 135-141.
71. Nian, Y.-R.; Teng, H., Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance. J. Electrochem. Soc. 2002, 149, A1008-A1014.
72. McCreery, R. L.; Cline, K. K.; McDermott, C. A.; McDermott, M. T., Control of reactivity at carbon electrode surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1994, 93, 211-219.
73. Ting, J.-M.; Wu, W.-Y.; Liao, K.-H.; Wu, H.-H., Low temperature, non-isothermal growth of carbon nanotubes. Carbon 2009, 47, 2671-2678.
74. Ting, J.-M.; Hung, S.-W.; Liao, K.-H., Characteristics of Fe-Si Thin-Film Catalysts and Their Effects on the Growth of Carbon Nanotubes. J. Electrochem. Soc. 2008, 155, K146-K151.
75. Ting, J.-M.; Hung, S.-W., Growth of CNTs on hydrogen plasma etched Fe–Si thin films. Carbon 2007, 45, 1119-1121.
76. Ting, J.-M.; Hung, S.-W., Deposition and characteristics of iron-silicon thin film catalyst for CNT growth. Diamond Relat. Mater. 2006, 15, 1834-1838.
77. Liao, K.-H.; Ting, J.-M., Characteristics of aligned carbon nanotubes synthesized using a high-rate low-temperature process. Diamond Relat. Mater. 2006, 15, 1210-1216.
78. Robertson, J., Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports 2002, 37, 129-281.
79. Li, W.; Zhang, H.; Wang, C.; Zhang, Y.; Xu, L.; Zhu, K.; Xie, S., Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 1997, 70, 2684-2686.
80. Hiura, H.; Ebbesen, T. W.; Tanigaki, K.; Takahashi, H., Raman studies of carbon nanotubes. Chem. Phys. Lett. 1993, 202, 509-512.
81. Inspektor, A.; Koresh, J. E.; Barton, S. S.; Evans, M. J. B., Plasma activation of carbon cloth. Carbon 1986, 24, 325-330.
82. Zhang, H.-L.; Liu, S.-H.; Li, F.; Bai, S.; Liu, C.; Tan, J.; Cheng, H.-M., Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 2006, 44, 2212-2218.
83. Tong, S. B.; Pareja, P.; Back, M. H., Correlation of the reactivity, the active surface area and the total surface area of thin films of pyrolytic carbon. Carbon 1982, 20, 191-194.
84. Gardner, S. D.; Singamsetty, C. S. K.; Booth, G. L.; He, G.-R.; Pittman Jr, C. U., Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587-595.
85. Vickerman, J. C.; Gilmore, I. S., Surface analysis: the principal techniques. Wiley Online Library: 2009.
86. Khomenko, V.; Raymundo-Piñero, E.; Béguin, F., A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources 2010, 195, 4234-4241.
87. Sánchez-González, J.; Stoeckli, F.; Centeno, T. A., The role of the electric conductivity of carbons in the electrochemical capacitor performance. J. Electroanal. Chem. 2011, 657, 176-180.
88. Qu, D., Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 2002, 109, 403-411.
89. Dujardin, E.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K., Capillarity and Wetting of Carbon Nanotubes. Science 1994, 265, 1850-1852.