| 研究生: |
林佳妏 Lin, Chia-Wen |
|---|---|
| 論文名稱: |
氰基丙烯酸酯與幾丁聚醣衍生物之凝血性質及應用 The hemostatic property and biomedical applications of cyanoacrylates and the derivatives of chitosan |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 氰基丙烯酸酯 、幾丁聚醣 |
| 外文關鍵詞: | cyanoacrylate, chitosan |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氰基丙烯酸酯(cyanoacrylates)與組織或血液接觸時會快速地引發聚合反應而達到凝結的效果,所以其商業化的產品如Histoacryl (N-butyl cyanoacrylate)可用於內視鏡血管栓塞劑之醫療應用上;但其價格昂貴,且一般的氰基丙烯酸酯本身的黏度低,當用於血管栓塞有時會因流動性高而影響操作上的定位準確性。
本研究則探討應用氰基丙烯酸乙酯(ethyl cyanoacrylate, ECA) 加入聚合調節劑後其作為血管栓塞劑的可行性。Ethyl cyanoacrylate又稱為三秒膠,在傳統接著上的應用十分廣泛,且價格較Histoacryl便宜,ECA中加入聚合起始劑– 咖啡鹼(caffeine)以增加其聚合速率及黏度;另外,Lipiodol則為常用的X光顯影劑,其本身的黏度高,並且可隔絕硬化劑注射前導管管壁上的水分以防止氰基丙烯酸酯單體在導管中產生聚合反應而阻塞,經由加入Lipiodol亦可觀察硬化劑在血管中隨血液的移動情形以及栓塞發生的位置。實驗試劑分別經由體外實驗及體內之動物實驗探討其作為血管栓塞劑的可行性。
但因為氰基丙烯酸酯聚合後通常形成較硬且脆的固體,而且其在生物體中水解後會產生氰基乙醯酯及甲醛等對生物組織具有毒性的物質。本研究便進一步以具有生物可分解性及促凝血活性的材料 – 幾丁聚醣(chitosan)進行化學改質並探討其應用於血管栓塞之可行性。本實驗以二種不同乙醯度之幾丁聚醣進行丁醯化及降解反應,以提高此幾丁聚醣衍生物在X光顯影劑(Lipiodol)中之溶解度,並測定其物理及化學性質以及在血液中之凝血特性。
另外,本研究中以此二種不同乙醯度之幾丁聚醣進行亞硝酸降解以製備幾丁寡醣(chitooligosaccharides),並提出一方法以不同組成比例的水/甲醇之溶液進行幾丁寡醣之分段分離。幾丁寡醣不僅可溶於中性的水溶液中更具有多樣化之生物活性,近年來,有關幾丁寡醣生理功能之研究便持續引起食品與醫藥界之重視,但經過降解反應後所得之幾丁寡醣有各種分子量,故需經過分離程序才能得到一定分子量分佈的產物,之前常用之分離及純化程序往往需要長時間,而且設備成本也相對較高,因此本實驗提出一方法以分離出不同分子量分佈範圍之幾丁寡醣。本實驗以此分段分離方法所得之幾丁聚醣進行化學及物理性質分析並測試其血液相容性。
Cyanoacrylates have known for their ability to polymerize rapidly in the presence of traces of weakly basic moieties such as water. The tissue adhesive, Histoacryl (N-butyl 2-cyanoacrylate), has been reported to control bleeding through endoscopic sclerotherapy. But the commercially available Histoacryl is expensive and it has the problem like other cyanoacrylates that the glue tends to flow/run away from the point of application, which is inherent to the low viscosity, making precise application difficult.
In this study, ethyl cyanoacrylate (ECA) was employed instead of Histoacryl due to its lower cost. The aim of the research is to modify the compositions of ECA regimen with caffeine and Lipiodol which would allow the roentegenologic monitoring in situ, and evaluate its feasibility for sclerosant application through both in vitro flow circuit model and in vivo animal tests. It was noted that the ECA setting rate was greatly increased by adding few dosage of caffeine, which is acting as a polymerization initiator. This would lead to far better injection precision during sclerotherapy. Furthermore, in vivo histological examination for the occluded lumen of the rat's inferior vena cava and a clinical piglet portal vein occlusion experiment have suggested this new sclerosant regimen, caffeine/ECA, was of great promise in endoscopic sclerotherapy.
Because the polymerized product of cyanoacrylates was hard and stiff, in addition, they would be degradated in the physiological milieu and cyanoacetate and formaldehyde were then yielded, both of which are tissue toxic. A biodegradable and blood coagulant material– chitosan was used for the further study.
Butyrylation and degradation were performed on two different chitosan samples with different degree of acetylation to prompt the chitosan derivatives dissolve in Lipiodol. The chemical and physical characteristics, blood coagulation properties were also measured to evaluate the feasibility of the chitosan derivatives for the hemostatic agent application.
In addition, the chitosan samples with different degree of acetylation were used separately to prepare chitooligosaccharide (COS) and highly deacetylated chitooligosaccharide (HDCOS) through the nitrous acid depolymerization. Water-soluble chitooligosaccharides have been reported to have specific biological activities. Rather than using the conventional fractionation schemes commonly employed, such as dialysis and ultrafiltration which require a large amount of deionized water as well as a fair long dwell time, an unique fractionation scheme is explored to recover and desalt these nitrous-acid depolymerized chitosan with different molecular weights. It was noted that chitosan with different molecular weight can be successfully recovered and fractionated with methanol added sequentially.
The chemical characterization of the fractionated water-soluble COS and HDCOS were measured by 1H NMR spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Moreover, the modified whole blood clotting time assay and the platelet coagulation test were also performed to evaluate the preliminary blood compatibility of the fractionated water-soluble COS and HDCOS.
1. H. Tanzawa. Biomedical polymers: current status and overview. In Biomedical Application of Polymeric Materials. T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara and Y. Kimura, eds., CPC Press, Boca Raton (1993).
2. G. Lux, M. Retterspitz, U. Stabenow-Lohbauer, M. Langer, A. Altendorf-Hofmann. Treatment of bleeding esophageal varices with cyanoacrylate and polidocanol, or polidocanol alone: Results of a prospective study in an unselected group of patients with cirrhosis of the liver. Endoscopy 29, 241 (1997).
3. C. Feretis, C. Dimopoulos, P. Kalliakmanis, N. Apostolidis. N-butyl-2-cyanoacrylate (Histoacryl) plus sclerotherapy versus sclerotherapy alone in the treatment of bleeding esophageal varices: a randomized prospective study. Endoscopy 27, 355 (1995).
4. Y. Yoshida, Y. Imai, M. Nishikawa, K. Shibata, H. Shimomukai, T. Shimano, K. Tokunaga, T. Yonezawa. Successful endoscopic injection sclerotherapy with N-butyl-2-cyanoacrylate following the recurrence of bleeding soon after endoscopic ligation for ruptured duodenal varices. Am. J. Gastroentrol. 92, 1227 (1997).
5. D.A.F. Ellis and A. Shaikn. The ideal tissue adhesive in facial plastic and reconstructive surgery J. Otolaryngol. 19, 68 (1990).
6. R.J. Morton, M.F. Gibson and J.P. Sloan. The use of Histoacryl tissue adhesive for primary closure of scalp wounds. Arch. Emerg. Med. 5, 110 (1988).
7. C. H. Millet. Cyanoacrylate adhesives In Structural Adhesives- Chemistry and Technology. H. Lee editor, Pasadena Technology Press, Calif. (1986)
8. V. Vijayalakshmi, J. N. Rupavani, and N. Krishnamurti. Alkyl and substituted alkyl 2-cyanoacrylates. Part 1. Synthesis and properties. J. Adhesion Sci. Technol. 4, 733-750 (1990).
9. F. Leonard, R. K. Kulkarni, G. Brandes, J. Nelson, and J. J. Cameron. Synthesis and degradation of poly(alkyl cyanoacrylates). J. Appl. Polym. Sci. 10, 250 (1966).
10. D. M. Toriumi, W. F. Raslan, M. Friedman, M. E. Tardy. Histotoxicity of cyanoacrylate tissue adhesives. Arch. Otolaryngol. Head Neck Surg. 116, 546 (1990).
11. 心臟循環生理學,杜厚成譯,合記出版社,民國74年。
12. 解剖生理學,李文森編著,華杏出版社,民國74年。
13. S. M. Slack, V. T. Turitto. Fluid dynamic and hemorheologic considerations. Cardiovasc. Pathol. 2, 11S (1993).
14. 張曉婷,以體外實驗之流體模擬血液中組織黏膠聚合的影響便因之探討,國立成功大學化學工程學系專題報告,2000年。
15. D. M. Toriumi, W. F. Raslan, M. Friedman, M. E. Tardy. Variable histotoxicity of Histoacryl when used in a subcutaneous site: An experimental study. Laryngoscope 101, 339 (1991).
16. D. C. Smith. Adhesives and sealants. In Biomaterials scienceAn introduction to materials in medicine. B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, editors. Academic Press, San Diego, 319 (1996).
17. S. Hirano, A facile method for the preparation of novel membranes from Nacyl and Narylidine chitosan gels. Agri. Biol. Chem. 42, 1938 (1978).
18. K. M. Mayer and G. W. Pankow, Helvetica Chimica Aceta 18, 589 (1935).
19. F. H. Seyler. Berichte der Deutschen Gesellschaft, 27, 3329 (1984).
20. P. Broussignac, Chimie et Industrie- Génie Chimique, 99, 1241 (1968).
21. Y. Araki, E. Ito. A pathway of chitosan formation in Mucor rouxii. Enzymatic deacetylation of chitin. Eu. J. of Biochem. 55, 71 (1975).
22. T. Chandy and C. P. Sharma. Chitosan – as a biomaterial. Biomat., Art. Cells and Art. Organs 18, 1 (1990).
23. M. G. Peter. Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci. -Pure and Applied Chemistry, A32, 629 (1995).
24. S. B. Rao and C. P. Sharma. Use of chitosan as a biomaterial:Studies on its safety and hemostatic potential. J. Biomed. Materi. Res., 34, 21 (1997).
25. J. Blackwell. Physical methods for the determination of chitin structure and conformation, In Biomass, Part B, Lignin, Pectin, and chitin, Academic Press, San Diego, 435 (1988).
26. W. G. Malette, J. Quigley and J. Herbert. Method for the therapeutic occlusion. US Patent 4452785 (1984).
27. A. Hoekstra, H. Struszczyk and O. Kivekäs. Percutaneous microcrystalline chitosan application for sealing arterial puncture sites, Biomarterials 19, 1467 (1998).
28. K. Kurita. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 26, 1921 (2001).
29. 王嘉薇,丁醯化幾丁聚醣之研究,國立成功大學化學工程研究所碩士論文,2003年。
30. K. Kurita, S. Ishii, K. Tomita, S. Nishimura, K. Shimoda. Reactivity characteristics of squid beta-chitin as compared with those of shrimp chitin – high potentials of squid chitin as a starting material for facile chemical modifications. J. Polym. Sci., Polym. Chem. 32, 1027 (1997).
31. K. Kaifu, N. Nishi, T. Komai, S. Tokura and O. Somorin. Studies on chitin. V. Formylation, propionylation, and butyrylation of chitin. Polym. J. 13, 241, 1981.
32. C. Hougie. Whole-blood coagulation time test and clot observation. In Hematology, W. J. Williams, E. Beutler, A. Marshall Lichtman, A. J. Erslev, Eds., McGraw-Hill Information Services Co., New York, 1765 (1990).
33. K. M. Vårum, M. W. Anthonsen, H. Grasdalen and O. Smidsrød. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr. Res. 211, 17 (1991).
34. A. Hiral, H. Odani and A. Nakajima. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 26, 87 (1991).
35. R. Signini, S. P. Campana Filho. On the preparation and characterization of chitosan hydrochloride. Polym. Bull. 42, 159 (1999).
36. W. Wang, S. Bo, S. Li, W. Qin, Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int. J. Biol. Macromol. 3, 281 (1991).
37. H. Sashiwa, N. Kawasaku, A. Nakayama, E. Muraki, et.al. Chemical modification of chitosan. 13. Synthesis of organosoluble, palladium adsorbable, and biodegradable chitosan derivatives toward the chemical plating on plastics. Biomacromolecules 3, 1120 (2002).
38. Z. Zong, Y. Kimura, M. Takahashi, H. Yamane. Characterization of chemical and solid state structures of acylated chitosans. Polymer 41, 899 (2000).
39. Y. J. Jeon, P. J. Park, S. K. Kim, Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44, 71 (2001).
40. K. Suzuki, T. Mikami, Y. Okawa, A. Tokoro, S. Suzuki and M. Suzuki. Antimutor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151, 403 (1986).
41. 蘇遠志,幾丁質與幾丁聚醣之機能及其有效利用,2001年幾丁質幾丁聚醣研討會論文專輯, s15, (2001).
42. S.C.W. Richardson, H.V.J. Kolbe, R. Duncan. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 178, 231 (1999).
43. R.A.A. Muzzarelli, M. Terbojevich, C. Muzzarelli, O. Francescangeli. Chitosans depolymerized with the aid of papain and stabilized as glycosylamines. Carbohydr. Polym. 50, 69 (2002).
44. H. Lin, H. Wang, C. Xue, M. Ye. Preparation of chitosan oligomers by immobilized papain. Enzyme Microb. Technol. 31, 588 (2002).
45. A.A. Muzzarelli, W. Xia, M. Tomasetti, P. Ilari. Depolymerization of chitosan and substituted chitosans with aid of a wheat germ lipase preparation. Enzyme Microb. Technol. 17, 541 (1995).
46. Pankaj R. Rege, Lawrence H. Block. Chitosan processing: influence of process parameters during acidic and alkaline hydrolysis and effect of the processing sequence on the resultant chitosan’s properties. Carbohydr. Res. 321, 235 (1999).
47. S. A. Barker, A. B. Foster, M. Stacey, and J. M. Webber. Amino-sugars and related compounds. Part IV. Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. J. Am. Chem. Soc. 2218 (1958).
48. A. McKillop and W. R. Sanderson. Sodium perborate and sodium percarbonate: cheap, safe and versatile oxidising agents for organic synthesis. Tetrahedron 51, 6145 (1995).
49. N. Kubota and Y. Eguchi. Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility. Polym. J. 29, 123 (1997).
50. K. T. Hwang, J. T. Kim, S. T. Jung, G. S. Cho, H. J. Park. Properties of chitosan-based biopolymer films with various degrees of deacetylation and molecular weights. J. Appl. Polym. Sci. 89, 3476 (2003).
51. Q. P. Peniston and E. L. Johnson, Process for depolymerization of chitosan. United States Patent. 3,922,260 (1975).
52. K. M. Vårum, M. H. Ottøy, O. Smidsrød. Acid hydrolysis of chitosans. Carbohydr. Polym. 46, 89 (2001).
53. K. Tømmeraas, K. M. Vårum, B. E. Christensen, O. Smidsrød. Preparation and characterization of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr. Res. 333, 137 (2001).
54. S. A. Baker, A. B. Foster, M. Stacey and J. M. Webber. Isolation of a homologous series of oligosaccharides from chitin. Chem. Ind. 208 (1957).
55. G. P. Palace and C. H. Phoebe. Quantitative Determination of Amino Acid Levels in Neutral and Glucosamine-Containing Carbohydrate Polymers. Anal. Chem. 244, 393 (1997).
56. Y. J. Jeon, P. J. Park, S. K. Kim, Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44, 71 (2001).
57. Q. P. Peniston and E. L. Johnson. Process for depolymerization of chitosan. United States Patent. 3,922,260 (1975).
58. K. Tømmeraas, K. M. Vårum, B. E. Christensen, O. Smidsrød. Preparation and characterization of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr. Res. 333, 137 (2001).
59. W. G. Malette, H. Quigley, R. D. Gaines, N. D. Johnson, G. Rainer. Chitosan: A new hemostatic. Ann. Thoracic. Surg. 36, 55 (1983).
60. S. B. Rao, C. P. Sharma. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J. Biomed. Materi. Res. 34, 21 (1997).