| 研究生: |
康莉莉 Kang, Li-Li |
|---|---|
| 論文名稱: |
表面處理對促進樹脂與氧化鋯鍵結的影響
—創新的化學分析和表面矽化法 Effects of surface treatments on promoting resin-zirconia bonding-- Innovations in chemical analysis and surface silicatization |
| 指導教授: |
王清正
Wang, Ching-Cheng |
| 共同指導教授: |
莊淑芬
Chuang, Shu-Fen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 氧化鋯 、矽烷 、10-MDP 、飛行時間二次離子質譜儀 、常壓氧電漿 、摩擦化學二氧化矽塗層 、鍵結強度 |
| 外文關鍵詞: | zirconia, silane, 10-MDP, ToF-SIMS, atmospheric pressure oxygen plasma, tribochemical silica coating, bond strength |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化釔穩定的四方氧化鋯多晶(Y-TZP)陶瓷具有卓越的機械強度、化學穩定性和光學性,被廣泛應用於固定義齒膺復。然而氧化鋯的化學穩定性、抗酸蝕能力以及惰性的性質,使的臨床醫師只藉由樹脂要將氧化鋯修復物緊密黏附於牙齒上成為一個挑戰。氧化鋁噴砂(AA)技術搭配10-MDP(MDP)基底耦合劑或混入矽烷耦合劑與摩擦化學二氧化矽塗層(TSC)搭配矽烷這兩種方式是目前主流技術。但這兩種方式對樹脂與氧化鋯間的黏附力會隨著老化或熱循環而降低。因此本研究第一部分探討MDP和矽烷的順序應用對樹脂黏附的影響:第二部分探討常壓氧電漿(OP)用於改善樹脂與氧化鋯黏著強度之應用。
第一部分研究,首次使用飛行時間二次離子質譜儀(ToF-SIMS)對MDP和矽烷塗層進行分子結構分析與分子三維空間(3D)影像重建的研究。表面處理分為矽烷和MDP基礎耦合劑,單次或順序應用:無耦合劑(AA)、矽烷耦合劑(S)、MDP基礎耦合劑(M)、矽烷/MDP混合物 (SMm)、矽烷塗佈後加MDP基礎耦合劑(SM) 和MDP基礎耦合劑塗佈後加矽烷耦合劑(MS)。ToF-SIMS分析結果顯示OH基吸附與滲入氧化鋯表層,其中S與MS滲入較深。所有含MDP組均存在不同比例和分佈的PO2−和PO3−。其中M 組的PO3−含量與PO3−/PO2−比值最高。含有高百分比的PO3−可能增加更多P-O-Zr鍵結的形成。噴砂後,在基材表面塗佈上述塗層。塗層的濕潤性藉由水和樹脂黏合劑滴在表面上後量測接觸角。塗層均增加了對水和樹脂黏合劑的濕潤性,濕潤程度受最終塗層成分影響,其中M和SM組表面呈現超親水。處理的表面與樹脂黏合後,放置到水中儲存 24 小時(早期測試)和6000次冷熱循環試驗,通過剪力測試分析樹脂黏合強度。含MDP基底耦合劑的組別均表現較佳的抗熱循環能力,其中M和SM組在熱循環試驗後維持最高的黏著強度。
第二部分研究為開發新的常壓氧電漿(OP)輔助矽化法處理氧化鋯修復體,是TSC、OP和矽烷的系列處理。沒有OP處理與有OP處理的噴砂氧化鋯表面(AA, AA-OP)分別塗佈矽烷耦合劑(AA-S, AA-OP-S)與矽烷混合MDP耦合劑(AA-SMm, AA-OP-SMm),並和沒有OP處理與有OP處理的TSC表面(TSC, TSC-OP)和塗佈矽烷耦合劑(TSC-S, TSC-OP-S)進行比較。表面形貌以SEM觀察、親水性以水滴角試驗檢測、化學成分使用X射線光電子能譜儀(XPS)分析、樹脂-氧化鋯黏附強度在24小時與6000次熱循環後使用剪力分析,進一步對6000次冷熱循環試驗後的氧化鋯斷面進行截面觀察。OP處理不改變噴砂處理的氧化鋯形貌,其氣流去除了TSC組鬆散的二氧化矽塗層,產生的熱促使表面二氧化矽顆粒轉變成緻密的簇或緊密的矽酸鹽層黏附在氧化鋯表面且呈現超親水狀態。OP在氧化鋯表面殘留的熱使矽烷在二氧化矽顆粒表層形成超薄膜。在XPS分析中,OP處理後的氧化鋯表面氧元素含量提升,碳元素减少,含矽烷組別中產生了顯著的Si2O3峰譜。這些結果表明OP清潔了氧化鋯表面,提高添加矽烷組別中的矽烷醇交聯。AA-OP-S和TSC-OP-S經6000次冷熱循環試驗後,樹脂與氧化鋯的鍵結力量幾乎不受影響。特別是在TSC-OP-S表現出色的黏著強度 (24.2 Mpa),於氧化鋯裂面端截面觀察到厚的黏著劑緊密殘留黏合在上方。然而在添加MDP的AA-SMm和AA-OP-SMm耐熱循環能力較弱,氧化鋯斷面樣本的橫截面中,黏合劑層顯示出內部缺陷。
在第一部分和第二部分的研究結果中,噴砂(AA)搭配MDP或TSC搭配矽烷的傳統方式可能無法提供穩定的樹脂與氧化鋯鍵結。由TOF-SIMS重建MDP與矽烷混合或順序塗佈界面層的3D離子影像中,觀察到MDP中的PO3−大量貼近在氧化鋯表面,從而有更多機會來生成P-O-Zr共價鍵增強樹脂-氧化鋯鍵結。單獨的MDP耦合劑或塗佈在外層,提供了 P-O-Zr 鍵形成的機會。然而在 MDP 中添加矽烷可能會損害 P-O-Zr 鍵的形成。本研究新的OP輔助矽化法促進來自TSC處理的氧化矽緊密的黏附在氧化鋯表面。OP清潔與活化了氧化鋯,經OP處理後殘留在試片上的熱可以蒸發耦合劑的溶劑,並讓施加上的矽烷與氧化矽塗層生成牢固且穩定以抵抗水解 Si-O-Si 薄膜與Si-O-Si鍵。OP輔助矽化法可能是牙科氧化鋯修復體的有效預黏接處理方式,能夠建立氧化鋯與樹脂間的穩定鍵結。
Yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics have excellent mechanical strength, chemical stability, and good optical properties, so it is widely used in fabrications of dental fixed dentures. Being chemically stable and resistance to acid corrosion, Y-TZP’s inert surface challenges the clinicians to adhere it with resin. At present, the common methods to bond zirconia to resin is surface air abrasion (AA) with alumina particles, and then treated with 10-methacryloyloxydecyl dihydrogen phosphate (MDP), silane primer, or their mixtures. The second appropriate method is tribochemical silica coating (TSC), then coating with functional primers. However, the bond strength via these two methods may decrease significantly after long-term immersion or the thermocycling test. Therefore, the first part of this study was to explore the effect of coating sequence of silane and MDP primer on the bond strength between resin adhesive and zirconia. The second part discussed the effect of atmospheric pressure oxygen plasma (OP) treatment on improving the resin-zirconia bonding strength.
In the first part of the study, time-of-flight secondary ion mass spectrometry (ToF-SIMS) in-depth analysis was first introduced to examine the molecular structure and three-dimensional spatial distribution of molecules in the coatings of silane and MDP-base primers, and the effects of silane and MDP-base primers, in their single or sequential applications: without primer (Zr), silane primer (S), MDP-base primer (M), silane-MDP mixture (SMm), silane followed by MDP (SM), and MDP followed by silane (MS). The ToF-SIMS results showed a large number of OH− detected at the zirconia interface in groups S and MS. All MDP-containing groups had different proportions and distributions of PO2− and PO3−. Group M produced the highest content of PO3−, higher PO3−/PO2− ratios. High percentages of PO3−might be associated with the generation of P-O-Zr bonds. After AA, different coatings were applied on the specimen surface. Surface wettability of these coatings was assessed by the contact angle after surface dropped water and resin adhesive. All the primers increased the surface wettability to water and resin. The wettability was affected by the final coating composition. The surfaces of M and SM obtained superhydrophilic surfaces. The resin bond strengths were analyzed by shear bond strength (SBS) tests after storage for 24 h (early testing) and after thermocycling. All groups involving the MDP primer-showed superior SBSs after 24 h, while M and SM retained highest SBSs after thermocycling.
In the second part of the study was to develop a new OP-aided silicatization method, a series of treatments of TSC, OP and silane. This study compared the results of OP without or with application on AA-treated zirconia (AA, AA-OP), then coating silane primer (AA-S, AA-OP-S) and silane-MDP mixture (AA-SMm, AA-OP-SMm), with the results of TSC-treated zirconia without or with OP application (TSC, TSC-OP), then coating silane primer (TSC-S, TSC-OP-S). Surface morphology was observed by SEM, hydrophilicity was detected by the contact angle test, and chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS), and the resin-zirconia bond strengths were examined either after 24 h and 6000 thermocycles. Further, the cross-sectional images of debonded zirconia specimens after 6000 thermocycles were observed. OP treatment exhibited no effect on the surface morphology of AA-treated zirconia. Airflow of OP removes the loose silica coating of the TSC group, and the generated heat promotes the transformation of surface silica particles into dense clusters or tight silicate layers adhered to the surface and obtained a superhydrophilic state. The residual heat of OP on the surface of zirconia made silane to form an ultra-thin film on the surface of silica particles. XPS analysis showed that OP treatment increased the oxygen elements content, decreased carbon elements, and significantly increased the formation of Si2O3 in groups containing silane, which indicated that OP cleans the zirconia surface and enhances the crosslinking of silanol in silane-treated groups. After 6000 thermocycling test, the resin-zirconia bond strength of AA-OP-S and TSC-OP-S were barely affected, especially in TSC-OP-S group which maintained excellent SBSs (24.2 Mpa), and also showed tightly bonded thick adhesive layers at the zirconia surfaces. However, the groups of AA-SMm and AA-OP-SMm containing the MDP-base primer had weak resistance ability on thermocycling. The adhesive layer of debonded side at cross-section of the zirconia showed internal defects.
With the results from the first and second parts of this study, it is concluded that the traditional protocols by either combining air abrasion (AA) with MDP, or TSC combining with silane may attain unstable resin-zirconia bonding. During the process of using ToF-SIMS to reconstruct 3D ion images of silane and MDP-base primers, in their single or sequential applications, amounts of PO3− was detected from zirconia surface, meaning having more opportunities to generate P-O-Zr covalent bonds to enhance resin-zirconia bonding. Applying MDP alone or MDP at the top coating provides the opportunity to form P-O-Zr bonds. However, addition of silane to MDP may impair the formation of P-O-Zr bonds. In this study, the new OP-aided silicatization makes the silica particles on TSC-treated surface tightly adhered to the zirconia surface. The OP was applied to clean and activate the zirconia surface. The heat left on the surface by OP treatment can evaporate the solvent of the coupling agent, and make the applied silane and silica coating form a strong and stable Si-O-Si film and Si-O-Si bond against hydrolysis. OP-aided silicatization may be an effective pre-bonding treatment for dental zirconia restorations to establish a reliable bond with resin cements.
[1] Wu X, Xie H, Meng H, Yang L, Chen B, Chen Y, et al. Effect of tribochemical silica coating or multipurpose products on bonding performance of a CAD/CAM resin-based material. Journal of the Mechanical Behavior of Biomedical Materials 2019;90:417-425.
[2] Nam SH, Lee HJ, Hong JW, Kim GC. Efficacy of nonthermal atmospheric pressure plasma for tooth bleaching. Scientific World Journal 2015:581731.
[3] Valverde GB, Coelho PG, Janal MN, Lorenzoni FC, Carvalho RM, Thompson VP, et al. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. Journal of Dentistry 2013;41(1):51-59.
[4] Park C, Yoo SH, Park SW, Yun KD, Ji MK, Shin JH, et al. The effect of plasma on shear bond strength between resin cement and colored zirconia. The Journal of Advanced Prosthodontics 2017;9(2):118-123.
[5] Shen C, Rawls HR, Esquivel-Upshaw JF. Phillips' science of dental materials e-book. Elsevier Health Sciences; 2021.
[6] Farid SBH. Structure, microstructure, and properties of bioceramics. Bioceramics: For materials science and engineering. 2019, p. 39-76.
[7] Deville S, Chevalier J. Martensitic relief observation by atomic force microscopy in yttria-stabilized zirconia. Journal of the American Ceramic Society 2003;86(12):2225-2227.
[8] Feng J, Thian ES. Applications of nanobioceramics to healthcare technology. Nanotechnology Reviews 2013;2(6):679-697.
[9] Abd El-Ghany OS, Sherief AH. Zirconia based ceramics, some clinical and biological aspects: Review. Future Dental Journal 2016;2(2):55-64.
[10] Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate--, alumina-, and zirconia-based three-unit fixed partial dentures: A laboratory study. International Journal of Prosthodontics 2001;14(3)
[11] Ahmed H. Craig's restorative dental materials. British Dental Journal 2019;226(1):9-9.
[12] Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomaterialia 2011;7(2):858-865.
[13] Zhu D, Liang J, Zhang X. Progress on hydrothermal stability of dental zirconia ceramics. Journal of Inorganic Materials 2020(35):759-768.
[14] Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dental Materials 2010;26(8):807-820.
[15] Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27(4):535-543.
[16] Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now? Dental Materials 2011;27(1):71-82.
[17] kuraray. Adhesive resin cemnet system panavia tm v5
[18] Yenisey M, Dede DO, Rona N. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics. Journal of Prosthodontic Research 2016;60(1):36-46.
[19] Hallmann L, Ulmer P, Lehmann F, Wille S, Polonskyi O, Johannes M, et al. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dental Materials 2016;32(5):631-639.
[20] Souza RO, Valandro LF, Melo RM, Machado JP, Bottino MA, Ozcan M. Air-particle abrasion on zirconia ceramic using different protocols: Effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. Journal of the Mechanical Behavior of Biomedical Materials 2013;26:155-163.
[21] ESPE M. Rocatec bonding-scientific product profile.
[22] Ozcan M, Pfeiffer P, Nergiz I. A brief history and current status of metal-and ceramic surface-conditioning concepts for resin bonding in dentistry. Quintessence International 1998;29(11):713-724.
[23] Hallmann L, Ulmer P, Reusser E, Hammerle CH. Surface characterization of dental Y-TZP ceramic after air abrasion treatment. Journal of Dentistry 2012;40(9):723-735.
[24] Heikkinen TT, Lassila LVJ, Matinlinna JP, Vallittu PK. Thermocycling effects on resin bond to silicatized and silanized zirconia. Journal of Adhesion Science and Technology 2009;23(7-8):1043-1051.
[25] Ana P, Ruxandra S. Adhesive cementation protocol of zirconia restorations. Romanian Journal of Oral Rehabilitation 2011;3(3):114-119.
[26] ESPE M. The chairside system for durable repaires-cojet intraoral adhesive repair system.
[27] Altan B, Cinar S, Tuncelli B. Evaluation of shear bond strength of zirconia-based monolithic cad-cam materials to resin cement after different surface treatments. Nigerian Journal of Clinical Practice 2019;22(11):1475-1482.
[28] Benetti AR, Papia E, Matinlinna J. Bonding ceramic restorations. Tandlægebladet 2019;123:36-42.
[29] Kern M, Wegner SM. Bonding to zirconia ceramic: Adhesion methods and their durability. Dental materials : official publication of the Academy of Dental Materials 1998;14(1):64-71.
[30] Shimoe S, Hirata I, Otaku M, Matsumura H, Kato K, Satoda T. Formation of chemical bonds on zirconia surfaces with acidic functional monomers. Journal of Oral Science 2018;60(2):187-193.
[31] Łagodzińska P, Bociong K, Dejak B. Influence of primers ' chemical composition on shear bond strength of resin cement to zirconia ceramic. Polimery w Medycynie 2014;44(1):13-20.
[32] Kitayama S, Nikaido T, Takahashi R, Zhu L, Ikeda M, Foxton RM, et al. Effect of primer treatment on bonding of resin cements to zirconia ceramic. Dental Materials 2010;26(5):426-432.
[33] Ikemura K, Jogetsu Y, Shinno K, Nakatsuka T, Endo T, Kadoma Y. Effects of a newly designed hema-free, multi-purpose, single-bottle, self-etching adhesive on bonding to dental hard tissues, zirconia-based ceramics, and gold alloy. Dental Materials Journal 2011;30(5):616-625.
[34] Alex G. Universal adhesives: The next evolution in adhesive dentistry? Compendium of continuing education in dentistry (Jamesburg, NJ: 1995) 2015;36(1):15-40.
[35] Afrasiabi A, Mostajir E, Golbari N. The effect of z-primer on the shear bond strength of zirconia ceramic to dentin: In vitro. Journal of clinical and experimental dentistry 2018;10(7):e661-e664.
[36] Elsayed A, Younes F, Lehmann F, Kern M. Tensile bond strength of so-called universal primers and universal multimode adhesives to zirconia and lithium disilicate ceramics. Journal of Adhesive Dentistry 2017;19(3):221-228.
[37] Bomicke W, Schurz A, Krisam J, Rammelsberg P, Rues S. Durability of resin-zirconia bonds produced using methods available in dental practice. Journal of Adhesive Dentistry 2016;18(1):17-27.
[38] Ahn JJ, Kim DS, Bae EB, Kim GC, Jeong CM, Huh JB, et al. Effect of non-thermal atmospheric pressure plasma (ntp) and zirconia primer treatment on shear bond strength between Y-TZP and resin cement. Materials (Basel) 2020;13(18)
[39] Zhao L, Jian YT, Wang XD, Zhao K. Bond strength of primer/cement systems to zirconia subjected to artificial aging. Journal of Prosthetic Dentistry 2016;116(5):790-796.
[40] Yang L, Chen B, Xie H, Chen Y, Chen Y, Chen C. Durability of resin bonding to zirconia using products containing 10-methacryloyloxydecyl dihydrogen phosphate. Journal of Adhesive Dentistry 2018;20(4):279-287.
[41] Pilo R, Kaitsas V, Zinelis S, Eliades G. Interaction of zirconia primers with yttria-stabilized zirconia surfaces. Dental Materials 2016;32(3):353-362.
[42] Byeon SM, Lee MH, Bae TS. Shear bond strength of Al2O3 sandblasted Y-TZP ceramic to the orthodontic metal bracket. Materials (Basel) 2017;10(2)
[43] Ye S, Lin J-C, Kang L-L, Li C-L, Hou S-S, Lee T-L, et al. Investigations of silane-MDP interaction in universal adhesives: A ToF-SIMS analysis. Dental Materials 2022;38(1):183-193.
[44] Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, et al. Chemical interaction mechanism of 10-MDP with zirconia. Scientific Reports 2017;7:45563.
[45] Chen C, Chen Y, Lu Z, Qian M, Xie H, Tay FR. The effects of water on degradation of the zirconia-resin bond. Journal of dentistry 2017;64:23-29.
[46] Yoshihara K, Nagaoka N, Okihara T, Kuroboshi M, Hayakawa S, Maruo Y, et al. Functional monomer impurity affects adhesive performance. Dental Materials 2015;31(12):1493-1501.
[47] Teshima I. Degradation of 10-methacryloyloxydecyl dihydrogen phosphate. Journal of Dental Research 2010;89(11):1281-1286.
[48] MALLOY KM, ROSEN D, ROSEN MR. Pocket dentistry.
[49] Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: A review. Dental Materials 2018;34(1):13-28.
[50] McDonough WG, Antonucci JM, Dunkers JP. Interfacial shear strengths of dental resin-glass fibers by the microbond test. Dental Materials 2001;17(6):492-498.
[51] Ferracane JL. Resin composite—state of the art. Dental Materials 2011;27(1):29-38.
[52] Lin C-T, Lee S-Y, Keh E-S, Dong D-R, Huang H-M, Shih Y-H. Influence of silanization and filler fraction on aged dental composites. Journal of Oral Rehabilitation 2000;27(11):919-926.
[53] Özcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dental Materials 2003;19(8):725-731.
[54] Matinlinna JP, Vallittu PK. Silane based concepts on bonding resin composite to metals. Journal of Contemporary Dental Practice 2007;8(2):1-8.
[55] Matinlinna JP, Choi AH, Tsoi JK-H. Bonding promotion of resin composite to silica-coated zirconia implant surface using a novel silane system. Clinical Oral Implants Research 2013;24(3):290-296.
[56] Yoshihara K, Nagaoka N, Sonoda A, Maruo Y, Makita Y, Okihara T, et al. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives. Dental Materials 2016;32(10):1218-1225.
[57] Queiroz JRC, Benetti P, Özcan M, de Oliveira LFC, Bona AD, Takahashi FE, et al. Surface characterization of feldspathic ceramic using atr ft-ir and ellipsometry after various silanization protocols. Dental Materials 2012;28(2):189-196.
[58] Hooshmand T, van Noort R, Keshvad A. Bond durability of the resin-bonded and silane treated ceramic surface. Dental Materials 2002;18(2):179-188.
[59] Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: A review. Dental Materials 2018;34(1):13-28.
[60] Blatz MB, Sadan A, Martin J, Lang B. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. Journal of Prosthetic Dentistry 2004;91(4):356-362.
[61] Inokoshi M, Kameyama A, De Munck J, Minakuchi S, Van Meerbeek B. Durable bonding to mechanically and/or chemically pre-treated dental zirconia. Journal of Dentistry 2013;41(2):170-179.
[62] Yao C, Yu J, Wang Y, Tang C, Huang C. Acidic ph weakens the bonding effectiveness of silane contained in universal adhesives. Dental Materials 2018;34(5):809-818.
[63] Tian F, Zhou L, Zhang Z, Niu L, Zhang L, Chen C, et al. Paucity of nanolayering in resin-dentin interfaces of MDP-based adhesives. Journal of Dental Research 2016;95(4):380-387.
[64] Koko M, Takagaki T, Abdou A, Inokoshi M, Ikeda M, Wada T, et al. Effects of the ratio of silane to 10-methacryloyloxydecyl dihydrogenphosphate (MDP) in primer on bonding performance of silica-based and zirconia ceramics. Journal of the Mechanical Behavior of Biomedical Materials 2020;112:104026.
[65] Chen B, Lu Z, Meng H, Chen Y, Yang L, Zhang H, et al. Effectiveness of pre-silanization in improving bond performance of universal adhesives or self-adhesive resin cements to silica-based ceramics: Chemical and in vitro evidences. Dental Materials 2019;35(4):543-553.
[66] Inokoshi M, Poitevin A, De Munck J, Minakuchi S, Van Meerbeek B. Bonding effectiveness to different chemically pre-treated dental zirconia. Clinical Oral Investigations 2014;18(7):1803-1812.
[67] Inokoshi M, Kameyama A, De Munck J, Minakuchi S, Van Meerbeek B. Durable bonding to mechanically and/or chemically pre-treated dental zirconia. Journal of Dentistry 2013;41(2):170-179.
[68] Mahoney CM. Cluster secondary ion mass spectrometry: Principles and applications. John Wiley & Sons; 2013.
[69] Singh DS, Chandra DR, Tripathi DS, Rahman DH, Tripathi DP, Jain DA, et al. The bright future of dentistry with cold plasma – review. IOSR Journal of Dental and Medical Sciences 2014;13(10):06-13.
[70] Lin L, Starostin SA, Li S, Hessel V. Synthesis of metallic nanoparticles by microplasma. Physical Sciences Reviews 2018;3(10)
[71] Sevilla P, Lopez-Suarez C, Pelaez J, Tobar C, Rodriguez-Alonso V, Suarez MJ. Influence of low-pressure plasma on the surface properties of cad-cam leucite-reinforced feldspar and resin matrix ceramics. Applied Sciences 2020;10(24):8856.
[72] Domonkos M, Tichá P, Trejbal J, Demo P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Applied Sciences 2021;11(11):4809.
[73] Schutze A, Jeong JY, Babayan SE, Jaeyoung P, Selwyn GS, Hicks RF. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Transactions on Plasma Science 1998;26(6):1685-1694.
[74] Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 2006;61(1):2-30.
[75] Chirokov A, Gutsol A, Fridman A. Atmospheric pressure plasma of dielectric barrier discharges. Pure and Applied Chemistry 2005;77(2):487-495.
[76] Borges AC, Kostov KG, Pessoa RS, de Abreu GMA, Lima GdMG, Figueira LW, et al. Applications of cold atmospheric pressure plasma in dentistry. Applied Sciences 2021;11(5):1975.
[77] Conrads H, Schmidt M. Plasma generation and plasma sources. Plasma Sources Science and Technology 2000;9(4):441.
[78] Sarkar A, Pal D, Sarkar S. Cold atmospheric plasma-future of dentistry. IOSR J Dent Med Sci e-ISSN 2018;17:15-20.
[79] Laroussi M. Cold plasma in medicine and healthcare: The new frontier in low temperature plasma applications. Frontiers in Physics 2020;8
[80] Dérand P, Dérand T. Bond strength of luting cements to zirconium oxide ceramics. The International journal of prosthodontics 2000;13(2):131-135.
[81] Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O. Gliding arc gas discharge. Progress in Energy and Combustion Science 1999;25(2):211-231.
[82] Czernichowski A. Gliding arc: Applications to engineering and environment control. Pure and Applied Chemistry 1994;66(6):1301-1310.
[83] Khalili F, Shokri B, Khani M-R, Hasani M, Zandi F, Aliahmadi A. A study of the effect of gliding arc non-thermal plasma on almonds decontamination. AIP Advances 2018;8(10)
[84] Vladescu M, Tamas R, Cristea I, Astanei D, Ursache M, Hnatiuc E, et al. Effects of glidarc plasma treatment on metallic surface. Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII. 2016:868-875.
[85] Silva NR, Coelho PG, Valverde GB, Becker K, Ihrke R, Quade A, et al. Surface characterization of ti and Y-TZP following non-thermal plasma exposure. Journal of Biomedical Materials Research - Part B Applied Biomaterials 2011;99(1):199-206.
[86] Guers P, Wille S, Strunskus T, Polonskyi O, Kern M. Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods. Dental Materials 2019;35(10):1388-1396.
[87] Kim DS, Ahn JJ, Bae EB, Kim GC, Jeong CM, Huh JB, et al. Influence of non-thermal atmospheric pressure plasma treatment on shear bond strength between Y-TZP and self-adhesive resin cement. Materials (Basel) 2019;12(20):3321.
[88] Yan M, Yang C-C, Chen Y-H, Ding S-J. Oxygen plasma improved shear strength of bonding between zirconia and composite resin. Coatings 2020;10(7):635.
[89] El-Shrkawy ZR, El-Hosary MM, Saleh O, Mandour MH. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic. Future Dental Journal 2016;2(1):41-53.
[90] Cha S, Park YS. Plasma in dentistry. Clinical Plasma Medicine 2014;2(1):4-10.
[91] Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence international (Berlin, Germany : 1985) 2002;33(6):415-426.
[92] Matinlinna JP, Lassila LV, Vallittu PK. Pilot evaluation of resin composite cement adhesion to zirconia using a novel silane system. Acta Odontologica Scandinavica 2007;65(1):44-51.
[93] Smith RL, Villanueva C, Rothrock JK, Garcia-Godoy CE, Stoner BR, Piascik JR, et al. Long-term microtensile bond strength of surface modified zirconia. Dental Materials 2011;27(8):779-785.
[94] Akgungor G, Sen D, Aydin M. Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. The Journal of Prosthetic Dentistry 2008;99(5):388-399.
[95] Yoshida K, Tsuo Y, Atsuta M. Bonding of dual-cured resin cement to zirconia ceramic using phosphate acid ester monomer and zirconate coupler. Journal of Biomedical Materials Research: Part B, Applied Biomaterials 2006;77(1):28-33.
[96] Koizumi H, Nakayama D, Komine F, Blatz MB, Matsumura H. Bonding of resin-based luting cements to zirconia with and without the use of ceramic priming agents. Journal of Adhesive Dentistry 2012;14(4):385-392.
[97] Blatz MB, Phark JH, Ozer F, Mante FK, Saleh N, Bergler M, et al. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clinical Oral Investigations 2010;14(2):187-192.
[98] Magne P, Paranhos MP, Burnett LH, Jr. New zirconia primer improves bond strength of resin-based cements. Dental Materials 2010;26(4):345-352.
[99] Nothdurft FP, Motter PJ, Pospiech PR. Effect of surface treatment on the initial bond strength of different luting cements to zirconium oxide ceramic. Clinical Oral Investigations 2009;13(2):229-235.
[100]Blatz M. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. The Journal of Prosthetic Dentistry 2004;91(4):356-362.
[101]Akgungor G, Sen D, Aydin M. Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. Journal of Prosthetic Dentistry 2008;99(5):388-399.
[102]Atsu S, Kilicarslan M, Kucukesmen H, Aka P. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. The Journal of Prosthetic Dentistry 2006;95(6):430-436.
[103]Mahoney CM, Wucher A. Molecular depth profiling with cluster ion beams In: Mahoney CM, editor Cluster secondary ion mass spectrometry: Principles and applications. Hoboken, New Jersey: Wiley; 2013, p. 117-205.
[104]Mahoney CM, Gillen G. An introduction to cluster secondary ion mass spectrometry (cluster sims) In: Mahoney CM, editor Cluster secondary ion mass spectrometry: Principles and applications. Hoboken, New Jersey: Wiley; 2013, p. 1-11.
[105]Chen L, Suh BI, Brown D, Chen X. Bonding of primed zirconia ceramics: Evidence of chemical bonding and improved bond strengths. American Journal of Dentistry 2012;25(2):103-108.
[106]Chusuei CC, Goodman DW, Van Stipdonk MJ, Justes DR, Schweikert EA. Calcium phosphate phase identification using XPS and time-of-flight cluster sims. Analytical Chemistry 1999;71(1):149-153.
[107]Lu HB, Campbell CT, Graham DJ, Ratner BD. Surface characterization of hydroxyapatite and related calcium phosphates by XPS and ToF-SIMS. Analytical Chemistry 2000;72(13):2886-2894.
[108]VanStipdonk MJ, Schweikert EA. On the formation of polyatomic ions from solid surfaces. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1994;88(1):55-60.
[109]Rickman RD, Verkhoturov SV, Balderas S, Bestaoui N, Clearfield A, Schweikert EA. Characterization of surface structure by cluster coincidental ion mass spectrometry. Applied Surface Science 2004;231-232:106-112.
[110]VanStipdonk M, Park MA, Schweikert EA, Sylvester P, Clearfield A. Surface structure investigations using plasma desorption mass spectrometry and coincidence counting. International Journal of Mass Spectrometry and Ion Processes 1993;128(3):133-141.
[111]Schafer WA, Carr PW, Funkenbusch EF, Parson KA. Physical and chemical characterization of a porous phosphate-modified zirconia substrate. Journal of Chromatography A 1991;587(2):137-147.
[112]Carrière D, Moreau M, Barboux P, Boilot J-P, Spalla O. Modification of the surface properties of porous nanometric zirconia particles by covalent grafting. Langmuir 2004;20(8):3449-3455.
[113]Matinlinna JP, Heikkinen T, Ozcan M, Lassila LV, Vallittu PK. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dental Materials 2006;22(9):824-831.
[114]Wegner SM, Kern M. Long-term resin bond strength to zirconia ceramic. Journal of Adhesive Dentistry 2000;2(2):139-147.
[115]Hummel M. Durability of the resin bond strength to the alumina ceramic procera. Dental Materials 2004;20(5):498-508.
[116]Yoshida K, Tsuo Y, Atsuta M. Bonding of dual-cured resin cement to zirconia ceramic using phosphate acid ester monomer and zirconate coupler. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2006;77B(1):28-33.
[117]Luthy H, Loeffel O, Hammerle C. Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dental Materials 2006;22(2):195-200.
[118]Xie H, Li Q, Zhang F, Lu Y, Tay FR, Qian M, et al. Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dental Materials 2016;32(3):403-411.
[119]Chen C, Chen Y, Lu Z, Qian M, Xie H, Tay FR. The effects of water on degradation of the zirconia-resin bond. Journal of Dentistry 2017;64:23-29.
[120]Nejatidanesh F, Savabi O, Jabbari E. Effect of surface treatment on the retention of implant-supported zirconia restorations over short abutments. Journal of Prosthetic Dentistry 2014;112(1):38-44.
[121]Liu Y-C, Hsieh J-P, Chen Y-C, Kang L-L, Hwang C-S, Chuang S-F. Promoting porcelain–zirconia bonding using different atmospheric pressure gas plasmas. Dental Materials 2018;34(8):1188-1198.
[122]Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports 2002;36(5):143-206.
[123]Li HP, Zhang XF, Zhu XM, Zheng M, Liu SF, Qi X, et al. Translational plasma stomatology: Applications of cold atmospheric plasmas in dentistry and their extension. High Voltage 2017;2(3):188-199.
[124]Liu Y, Liu Q, Yu QS, Wang Y. Nonthermal atmospheric plasmas in dental restoration. Journal of Dental Research 2016;95(5):496-505.
[125]Barquete CG, Simao RA, Almeida Fonseca SS, Elias AB, Antunes Guimaraes JG, Herrera EZ, et al. Effect of cementation delay on bonding of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic treated with nonthermal argon plasma. Journal of Prosthetic Dentistry 2021;125(4):693 e691-693 e697.
[126]Vilas Boas Fernandes Junior V, Barbosa Dantas DC, Bresciani E, Rocha Lima Huhtala MF. Evaluation of the bond strength and characteristics of zirconia after different surface treatments. Journal of Prosthetic Dentistry 2018;120(6):955-959.
[127]Belkind A, Gershman S. Plasma cleaning of surfaces. Vacuum technology & coating 2008:46-57.
[128]Chuang SF, Kang LL, Liu YC, Lin JC, Wang CC, Chen HM, et al. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study. Dental Materials 2017;33(8):923-933.
[129]Jin Y, Ren C, Yang L, Zhang J, Wang D. Atmospheric pressure plasma jet in Ar and O2/Ar mixtures: Properties and high performance for surface cleaning. Plasma Science and Technology 2013;15(12):1203-1208.
[130]Ding S, Zhao J, Yu Q. Effect of zirconia polymorph on vapor-phase ketonization of propionic acid. Catalysts 2019;9(9)
[131]Dell'amico DB, Bertagnolli H, Calderazzo F, D'Arienzo M, Gross S, Labella L, et al. Nanostructured copper oxide on silica-zirconia mixed oxides by chemical implantation. Chemistry 2009;15(19):4931-4943.
[132]Huang X, Sin JK, Lai P. Improved charge-trapping characteristics of batio3 by Zr doping for nonvolatile memory applications. IEEE electron device letters 2013;34(4):499-501.
[133]Wang YM, Li YS, Mitchell KAR. LEED crystallographic analysis for the structure formed by 2 ML of O at the Zr(0001) surface. Surface Science 1997;380(2):540-547.
[134]Chen Y, Yan X, Li K, Zheng S, Sano H, Zhan D, et al. Effect of air-blowing temperature and water storage time on the bond strength of five universal adhesive systems to dentin. Dental Materials Journal 2021;40(1):116-122.
[135]Reis A, Klein-Junior CA, de Souza FH, Stanislawczuk R, Loguercio AD. The use of warm air stream for solvent evaporation: Effects on the durability of resin-dentin bonds. Operative Dentistry 2010;35(1):29-36.
[136]Tokunaga E, Nagaoka N, Maruo Y, Yoshihara K, Nishigawa G, Minagi S. Phosphate group adsorption capacity of inorganic elements affects bond strength between CAD/CAM composite block and luting agent. Dental Materials Journal 2021;40(2):288-296.
[137]Yamauchi T, Kitamura H, Wakai N, Zaima S, Koide Y, Yasuda Y. Photoelectron spectroscopic studies on interfacial reactions in Zr/2×1(100)si and Zr/SiO2/(100)si systems. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1993;11(5):2619-2622.
[138]Belkind A, Gershman S. Plasma cleaning of surfaces. Vac Technol Coat 2008:1-11.
[139]Gutowski M, Jaffe JE, Liu C-L, Stoker M, Hegde RI, Rai RS, et al. Thermodynamic stability of high-k dielectric metal oxides ZrO2 and hfo2 in contact with si and SiO2. Applied Physics Letters 2002;80(11):1897-1899.
[140]Rohnke M. Surface oxygen exchange between yttria-stabilised zirconia and a low-temperature oxygen rf-plasma. Solid State Ionics 2004;166(1-2):89-102.
[141]Lung CY, Botelho MG, Heinonen M, Matinlinna JP. Resin zirconia bonding promotion with some novel coupling agents. Dental Materials 2012;28(8):863-872.
[142]Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: A review. Dental Materials 2018;34(1):13-28.
[143]Lima RBW, Barreto SC, Hajhamid B, de Souza GM, de Goes MF. Effect of cleaning protocol on silica deposition and silica-mediated bonding to Y-TZP. Dental Materials 2019;35(11):1603-1613.
[144]Turner MR, Duguet E, Labrugere C. Characterization of silane-modified ZrO2 powder surfaces. Surface and Interface Analysis 1997;25(12):917-923.
[145]Ha J-Y, Son JS, Kim YK, Kim K-H, Kwon T-Y. Effect of heat treatment of dental zirconia ceramic treated with three different primers on the bonding durability of resin cement. Macromolecular Research 2012;21(1):71-77.
[146]Mazzitelli C, Maravic T, Mancuso E, Josic U, Generali L, Comba A, et al. Influence of the activation mode on long-term bond strength and endogenous enzymatic activity of dual-cure resin cements. Clinical Oral Investigations 2022;26(2):1683-1694.
[147]Yang L, Chen B, Meng H, Zhang H, He F, Xie H, et al. Bond durability when applying phosphate ester monomer-containing primers vs. Self-adhesive resin cements to zirconia: Evaluation after different aging conditions. Journal of Prosthodontic Research 2020;64(2):193-201.
[148]Xie H, Li Q, Zhang F, Lu Y, Tay FR, Qian M, et al. Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dental Materials 2016;32(3):403-411.
[149]Ye S, Chuang SF, Hou SS, Lin JC, Kang LL, Chen YC. Interaction of silane with 10-MDP on affecting surface chemistry and resin bonding of zirconia. Dental Materials 2022;38(4):715-724.
[150]de Menezes MJ, Arrais CA, Giannini M. Influence of light-activated and auto- and dual-polymerizing adhesive systems on bond strength of indirect composite resin to dentin. Journal of Prosthetic Dentistry 2006;96(2):115-121.
[151]Ma S, Nakajima KF, Nishiyama N. Effects of storage temperature on the shelf life of one-step and two-step self-etch adhesives. Operative Dentistry 2009;34(4):472-480.
[152]Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dental Materials 2013;29(8):871-880.
[153]Habib SB, Gonzalez E, Hicks RF. Atmospheric oxygen plasma activation of silicon (100) surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2010;28(3):476-485.