簡易檢索 / 詳目顯示

研究生: 許邵涵
Xu, Shao-Han
論文名稱: 以熱力學法探討氫載體對於SOEC/SOFC系統於日間儲能及夜間發電之性能與效率分析
Evaluating the performance and efficiency of hydrogen carriers for the SOEC/SOFC system in daytime energy storage and nighttime power generation with thermodynamic methods
指導教授: 陳朝光
Chen, Cha'o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: 固態氧化物燃料電池固態氧化物電解電池SOFC-SOEC混合系統氨燃料
外文關鍵詞: Solid Oxide Fuel Cell, Solid Oxide Electrolyzer Cell, SOFC-SOEC Hybrid System, Ammonia Fuel
相關次數: 點閱:55下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我國為了實現2050年零碳排放的能源政策,將進一步增加對再生能源的依賴,同時,必須面臨再生能源的間歇性特性以及能量儲存的需求。為了解決這些問題,本研究探討一種基於固態氧化物燃料電池(SOFC)和固態氧化物燃料電解電池(SOEC)的能源系統。該系統利用太陽能產生過剩的電力於SOEC進行電解水生產氨氣,在夜間或再生能源供應不足時,將儲存的氨氣供應給SOFC系統進行發電。
    本研究之目的是分析在不同操作溫度下,SOFC和SOEC系統的過電位損失、輸出(輸入)電壓、輸出(輸入)功率和效率隨電流密度變化的情況,以及探討燃料(水蒸氣)利用率對系統淨輸出(輸入)功率和系統效率的影響,並且利用子系統以確保在不同操作電流密度下,燃料和空氣進入SOFC/SOEC系統時能達到所需的溫度。最後,本文也比較氨氣和氫氣作為料源的SOFC和SOEC系統的優劣勢。
    根據數值分析的結果可知,對於以氨氣為料源的SOFC系統,當操作溫度上升50K,活性過電壓與歐姆過電壓約分別下降0.12V(25.3%)與0.0032V(34.8%),濃度過電壓上升約0.0008V(6.01%),導致電池輸出的最大功率增加大約5.53 kW( 42.4%)。此外,當電流密度為3000A/m^2且燃料利用率70%,系統的淨輸出功率分別為7.41 kW(873K)、8.72(923K) kW、9.87 kW(973K)、11 kW(1023K) ,而系統效率分別為15.76%、27.82%、42%、58.53%,隨著燃料利用率上升至80%,對操作溫度973K以及1073K的系統淨輸出功率會分別下降0.07 kW以及1.12 kW,而系統效率會分別上升5.68%以及1.55%。
    另一方面,在比較氨氣和氫氣作為料源的SOFC系統的結果顯示,對於在 873K、923K 和 973K 下運行的系统,當燃料利用率為70%時,以氫氣為料源的系統具有較高的最大淨輸出功率,然而當燃料利用率上升至90%時,會轉變為以氨氣為料源的系統具有較高的最大淨輸出功率,而模擬當中還發現,當燃料利用率為90%時,以氨為料源系統分別多出3.55 kW (873K)、5.58 kW (923K)、6.07 kW (973K)的最大淨輸出功率。
    對於SOEC系統,在電流密度3000 A/m^2下,當操作溫度提高50K,產氨系統可以降低3.98 kW輸入功率,此外,電流密度為3000 A/m^2且水蒸氣利用率為70%時,產氨系統輸入功率分別為28.99kW(873K)、25.11kW(923K)、23.12kW(973K)、21.26kW(1023K),而當水蒸氣利用率上升時,對於SOEC系統輸入功率和效率影響相當的微小。
    另一方面,在比較產氨和產氫的SOEC系統的結果顯示,SOEC產氫系統所需之輸入功率小於產氨系統,而電解效率高於產氨效率;當電流密度在3000A/m^2且水蒸氣利用率為70%時,產氨系統分別需要額外輸入2.36 kW(873K)、2.59kW(923K)、2.84kW(973K)與3.32kW(1023K)的功率,產氫系統分別高出11.13%、14.57%、17.68%與22.17%的效率。

    The objective of this study is to develop a numerical analysis model that combines solar energy, SOEC and SOFC. The model aims to store the excess renewable energy generated from electrolysis on weekdays to produce fuel through SOEC and to be used by the SOFC system at night. In this study, the performance of the SOFC and SOEC systems is analyzed from the point of view of temperature and utilization effects taking into account the heat losses in the heat exchanger and afterburning chamber, while comparing the performance differences between the use of ammonia and hydrogen as feed sources.
    The results of the study show that when temperature and utilization effects are investigated, it is found that as the operating temperature increases, the total overvoltage decreases, leading to an increase in the output power of the solid SOFC and a decrease in the input power of the SOEC.
    As the fuel utilization increases, the net output power of the SOFC system decreases at operating temperatures of 973K and 1073K. However, for SOFC systems operating at 873K and 923K, increasing fuel utilization does not affect the net power output. In addition, the input power of the SOEC system is relatively unaffected by water vapor utilization.

    中文摘要 I 英文延伸摘要 III 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 符號說明 XV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 文章架構 4 第二章 文獻回顧 5 2.1 固態氧化物燃料電池(SOFC)回顧 5 2.1.1 氧離子與質子傳導 7 2.2 固態氧化物燃料電池系統以氨氣為料源 8 2.2.1 氨氣熱分解原理 9 2.3 固態氧化物電解電池系統以合成氨氣 11 2.4 PV-SOEC-SOFC 混合系統 13 第三章 理論模型 15 3.1 研究假設 15 3.2 SOFC 系統分析 16 3.2.1 活性過電壓 Activation Overpotential 19 3.2.2 歐姆過電壓 Ohmic Overpotential 20 3.2.3 濃度過電壓 Concentration Overpotential 21 3.2.4 SOFC 輸出功率與效率分析 22 3.2.5 SOFC陰陽極出口溫度計算 24 3.3 SOEC 系統分析 25 3.3.1 SOEC輸入功率與效率分析 28 3.4 全系統架構與子系統分析 29 3.4.1 後燃室子系統分析 35 3.4.2 熱交換器子系統分析 35 3.4.3 電熱器子系統分析 36 3.4.4 全系統功率與效率分析 36 3.5 計算流程 37 第四章 驗證 39 4.1 SOFC 性能驗證 39 4.2 SOEC 性能驗證 41 第五章 結果與討論 43 5.1 SOFC 以氨氣為料源之輸出電壓、輸出功率與電池效率 43 5.2 溫度效應對於氨料源SOFC電堆的過電位影響分析 45 5.3 SOFC 以氨氣為料源之系統淨輸出功率與系統效率 48 5.4 SOFC 以氫氣為料源之系統淨輸出功率與系統效率 52 5.5 SOFC 以氨氣與氫氣為料源之最大淨輸出功率比較 56 5.6 SOEC 產氨與產氫之輸入電壓、輸入功率及電解效率 58 5.7 溫度效應對於氨料源SOEC電堆的過電位影響分析 62 5.8 SOEC 產氨之系統輸入功率與系統效率 63 5.9 SOEC 產氫之系統輸入功率與系統效率 67 5.10 SOEC系統產氨與產氫的輸入功率與效率比較 70 5.11 不同料源對於發電與電解系統的Sankey diagram分析 71 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來與展望 76 參考文獻 78 附錄 82

    [1] 111年各縣市太陽光電容量因數,台灣電力公司.
    [2] S. Pearson, S. Wellnitz, N. Hashemipour. “The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030”, Applied Energy Volume 326, Article 119905, 2022.
    [3] G. Cinti, G. Discepoli, E. Sisani, U. Desideri, “SOFC operating with ammonia: Stack test and system analysis”, Volume 41, Issue 31, pp. 13583-13590, 2016.
    [4] C. Zamfirescu, I. Dincer, “Using ammonia as a sustainable fuel”, Journal of Power Sources,Volume 185, Issue 1, pp. 459-465, 2008.
    [5] K. Selvam, Y. Komatsu, A. Sciazko, S. Kaneko, N. Shikazono, “Thermodynamic analysis of 100% system fuel utilization solid oxide fuel cell (SOFC) system fueled with ammonia”, Energy Conversion and Management, Volume 249, Article 114839, 2021.
    [6] J.O. Jensen, A.P. Vestbø, Q. Li, N.J. Bjerrum, ” The energy efficiency of onboard hydrogen storage”, Journal of Alloys and Compounds, Volumes 446–447, pp. 723-728, 2007.
    [7]B. Wang, T. Li, F. Gong, R. Xiao, “Ammonia as a green energy carrier: Electrochemical synthesis and direct ammonia fuel cell - a comprehensive review”, Fuel Processing Technology, Volume 235, Article 107380, 2022.
    [8] F.B. Juangsa, A.R. Irhamna , M. Aziz, “Production of ammonia as potential hydrogen carrier: Review on thermochemical and electrochemical processes”, International Journal of Hydrogen Energy, Volume 46, Issue 27, pp. 14455-14477, 2021.
    [9] S. Wang, S.P. Jiang, “Prospects of fuel cell technologies”, National Science Review, Volume 4, pp. 161–163, 2017.
    [10] F. Ramadhani , M.A. Hussain, H. Mokhlis, S. Hajimolana, “Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey”, Renewable and Sustainable Energy Reviews, Volume 76, pp. 460-484, 2017.
    [11] S.S. Rathore, S. Biswas, D. Fini , S. Giddey, “Direct ammonia solid-oxide fuel cells: A review of progress and prospects” International Journal of Hydrogen Energy, Volume 46, Issue 71, pp. 35365-35384, 2021.
    [12] P.G. Bavarsad, “Energy and exergy analysis of internal reforming solid oxide fuel cell–gas turbine hybrid system”, International Journal of Hydrogen Energy, Volume 32, Issue 17, pp. 4591-4599, 2007.
    [13] F. Calise, M. Dentice d’Accadia, A. Palombo , L. Vanoli, “Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System”, Energy, Volume 31, Issue 15, pp. 3278-3299, 2006.
    [14] T. Zhang, J. Uratani, Y. Huang, L. Xu, S. Griffiths, Y. Ding, “Hydrogen liquefaction and storage: Recent progress and perspectives”, Renewable and Sustainable Energy Reviews, Volume 176, Article 113204, 2023.
    [15] A. Afif, N. Radenahmad , Q. Cheok, S. Shams, J.H. Kim, A.K. Azad, “Ammonia-fed fuel cells: a comprehensive review”, Renewable and Sustainable Energy Reviews, Volume 60, pp. 822-835, 2016.
    [16] Z. Wan , Y. Tao, J. Shao , Y. Zhang, H. You, “Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells”, Energy Conversion and Management, Volume 228, Article 113729, 2021.
    [17] “Path to hydrogen competitiveness A cost perspective”,Hydrogen Council,2020.
    [18] N. J. J. Dekker , G. Rietveld ,“Highly Efficient Conversion of Ammonia in Electricity by Solid Oxide Fuel Cells”, Journal of Fuel Cell Science and Technology, Volume 3, pp. 499-502, 2006.
    [19] T. Okanishi, K. Okura, A. Srifa , H. Muroyama, T. Matsui, “Comparative Study of Ammonia-fueled Solid Oxide Fuel Cell Systems”, FUEL CELLS, Volume 17, No. 3, pp. 383–390, 2017.
    [20] K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Additive effect of alkaline earth metals on ammonia decomposition reaction over Ni/Y2O3 catalysts”, RCS Advances, Volume 6, Issue 88, Article 85142, 2016.
    [21] C. Smith, “Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape”, Energy Environ, Volume 13, Issue 2, Article 331, 2020.
    [22] R. Lan, J.T.S. Irvine, S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials”, International Journal of Hydrogen Energy, Volume 37, Issue 2, pp. 1482-1494, 2012.
    [23] E. Morgan, J. Manwell, J. McGowan, “Wind-powered ammonia fuel production for remote islands: A case study”, Renewable Energy, Volume 72, pp. 51-61, 2014.
    [24] R. Zhao, H. Xie, L. Chang, “Recent progress in the electrochemical ammonia synthesis under ambient conditions”, EnergyChem, Volume 1, Issue 2, Article 100011, 2019.
    [25] P. Mottaghizadeh, M. Fardadi, F. Jabbari, J. Brouwer, “Dynamics and control of a thermally selfsustaining energy storage system using integrated solid oxide cells for an islanded building”, International Journal of Hydrogen Energy,Volume 46, Issue 49, pp. 24891-24908, 2021.
    [26] P.C. Ghosh, B. Emonts, H. Janßen, J. Mergel, D. Stolten, “Ten years of operational experience with a hydrogen-based renewable energy supply system”, Solar Energy, Volume 75, Issue 6, pp. 469-478, 2003.
    [27] Y. Sun, T. Qian, J. Zhu, N. Zheng, Y. Han, G. Xiao, M. Ni, H. Xu, “Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation”, Volume 263, Article 125725, 2023.
    [28] M. Ni, D.Y.C. Leung, M.K.H. Leung, “Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte”, Journal of Power Sources, Volume 183, Issue 2, pp. 687-692, 2008.
    [29] J. Zhou, Z. Wang, M. Han, Z. Sun, K. Sun, “Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels”, International Journal of Hydrogen Energy, Volume 47, Issue 6, pp. 4109-4119, 2022.
    [30] N.D. Tuyen, G. Fujita, “Modelling a SOFC Power Unit Using Natural Gas Fed Directly”, Advances in Natural Gas Technology, 2012.
    [31] X. Chen, Y. Pan, J. Chen, “Performance and Evaluation of a Fuel Cell–Thermoelectric Generator Hybrid System”, Fuel Cell, Volume10, Issue6, pp. 1164-1170, 2010.
    [32] Y. Zhao, H. Xue, X. Jin, B. Xiong, R. Liu, Y. Peng, L. Jiang, G. Tian, “System level heat integration and efficiency analysis of hydrogen production process based on solid oxide electrolysis cells”, International Journal of Hydrogen Energy, Volume 46, Issue 77, pp. 38163-38174, 2021.
    [33] E. Açıkkalp, “Thermo-environmental performance analysis of irreversible solid oxide fuel cell – Stirling heat engine”, International Journal of Ambient Energy, Volume 39, Issue 7, pp. 751-758 , 2018
    [34] T.Q. Quach, V.T. Giap, D.K. Lee, T.P. Israel, K.Y. Ahn, “High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation”, Applied Energy, Volume 324, Article 119718, 2022.
    [35] S. Licht, B. Cui, B. Wang, F.F. Li, J. Lau, S. Liu, “Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3”, VOL 345, ISSUE 6197, pp. 637-639, 2012
    [36] L. Hollevoet, M.D. Ras, M. Roeffaers, J. Hofkens, J.A. Martens, “Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency”, ACS Energy, Volume 5, Issue 4, pp. 1124–1127, 2020.
    [37] Y. Patcharavorachot, N. Chatrattanawet, A. Arpornwichanop, D. Saebea, “Comparative energy, economic, and environmental analyses of power-to-gas systems integrating SOECs in steam-electrolysis and co-electrolysis and methanation”, Thermal Science and Engineering Progress, Volume 42, Article 101873, 2023.
    [38] P. Guo, N. Bharath Kumar, Y. Elmasry, A. Alanazi, T.I. Alanazi, A. Armghan, A.M. Algelany, “CO2 hydrogenation for geothermal energy storage through synthetic natural gas production and byproduct of refrigeration and freshwater using solid oxide electrolyzer cell (SOEC) and methanation reactor; Techno-economic evaluation and multi-objective optimization”, Journal of CO2 Utilization, Volume 69, Article 102395, 2023.
    [39] K. Huang, J.B. Goodenough, “Solid Oxide Fuel Cell Technology”, 2009.
    [40] Y. Cengel, M. Boles, “Thermodynamics: An Engineering Approach 8th Edition”, Wiley, 2015.
    [41] Q. Wang, L. Duan , Z. Lu, N. Zheng, “Thermodynamic performance comparison of SOFCMGT-CCHP systems coupled with two different solar methane steam reforming processes”, International Journal of Hydrogen Energy, 2023.
    [42] Y. Cao, T. parikhani, “A solar-driven lumped SOFC/SOEC system for electricity and hydrogen production: 3E analyses and a comparison of different multi-objective optimization algorithms”, Journal of Cleaner Production, Volume 271, Article 122457, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE